Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34601229

RESUMO

Hybridization is an efficient method to breed new strains of aquatic animals. In the present study, we produced a hybrid puffer by crossing female obscure puffer with male tiger puffer. The hybrid puffer could live in fresh water like obscure puffer and exhibited growth superiority. The averaged body weight of 4- and 6-month-old hybrid puffer were respectively 38.06% and 38.93% higher than that of obscure puffer. Then, we analyzed the underlying genetic basis for the growth advantage of hybrid puffer by comparative transcriptome analysis. A total number of 4264 and 1285 differentially expressed genes (DEGs) were respectively identified from pituitary and liver transcriptome profiles between hybrid puffer and obscure puffer. Comprehensive analysis showed that the DEGs related with cell proliferation and differentiation, and protein synthesis and export, specifically showed higher expression levels in hybrid puffer, such as "ECM-receptor interaction", "focal adhesion", "protein export" and "protein processing in endoplasmic reticulum". While the DEGs involved in gametogenesis and carbohydrate and energy metabolism highly expressed in obscure puffer, such as "oxidative phosphorylation", "citrate cycle", "progesterone-mediated oocyte maturation" and "oocyte meiosis". Furthermore, a series of candidate genes related to the growth superiority of hybrid puffer were identified, such as fn1a, ptprc, plcg2, igf1, tgfß1, bmp4, abl1, col1a2, col1a1a, and myl9a. These results will be beneficial to understand the molecular basis of growth superiority and helpful to the hybrid breeding of pufferfish.

2.
PLoS Genet ; 17(9): e1009760, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491994

RESUMO

Unisexual taxa are commonly considered short-lived as the absence of meiotic recombination is supposed to accumulate deleterious mutations and hinder the creation of genetic diversity. However, the gynogenetic gibel carp (Carassius gibelio) with high genetic diversity and wide ecological distribution has outlived its predicted extinction time of a strict unisexual reproduction population. Unlike other unisexual vertebrates, males associated with supernumerary microchromosomes have been observed in gibel carp, which provides a unique system to explore the rationales underlying male occurrence in unisexual lineage and evolution of unisexual reproduction. Here, we identified a massively expanded satellite DNA cluster on microchromosomes of hexaploid gibel carp via comparing with the ancestral tetraploid crucian carp (Carassius auratus). Based on the satellite cluster, we developed a method for single chromosomal fluorescence microdissection and isolated three male-specific microchromosomes in a male metaphase cell. Genomic anatomy revealed that these male-specific microchromosomes contained homologous sequences of autosomes and abundant repetitive elements. Significantly, several potential male-specific genes with transcriptional activity were identified, among which four and five genes displayed male-specific and male-biased expression in gonads, respectively, during the developmental period of sex determination. Therefore, the male-specific microchromosomes resembling common features of sex chromosomes may be the main driving force for male occurrence in gynogenetic gibel carp, which sheds new light on the evolution of unisexual reproduction.

3.
Front Immunol ; 12: 702971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531856

RESUMO

Polyploidy and subsequent diploidization provide genomic opportunities for evolutionary innovations and adaptation. The researches on duplicated gene evolutionary fates in recurrent polyploids have seriously lagged behind that in paleopolyploids with diploidized genomes. Moreover, the antiviral mechanisms of Viperin remain largely unclear in fish. Here, we elaborate the distinct antiviral mechanisms of two viperin homeologs (Cgviperin-A and Cgviperin-B) in auto-allo-hexaploid gibel carp (Carassius gibelio). First, Cgviperin-A and Cgviperin-B showed differential and biased expression patterns in gibel carp adult tissues. Subsequently, using co-immunoprecipitation (Co-IP) screening analysis, both CgViperin-A and CgViperin-B were found to interact with crucian carp (C. auratus) herpesvirus (CaHV) open reading frame 46 right (ORF46R) protein, a negative herpesvirus regulator of host interferon (IFN) production, and to promote the proteasomal degradation of ORF46R via decreasing K63-linked ubiquitination. Additionally, CgViperin-B also mediated ORF46R degradation through autophagosome pathway, which was absent in CgViperin-A. Moreover, we found that the N-terminal α-helix domain was necessary for the localization of CgViperin-A and CgViperin-B at the endoplasmic reticulum (ER), and the C-terminal domain of CgViperin-A and CgViperin-B was indispensable for the interaction with degradation of ORF46R. Therefore, the current findings clarify the divergent antiviral mechanisms of the duplicated viperin homeologs in a recurrent polyploid fish, which will shed light on the evolution of teleost duplicated genes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34509952

RESUMO

Determining the sex and controlling the sex ratio are essential aspects of fish genetics that can assist in developing successful fish breeding programs. High quality genome assembly and annotations are prerequisites to determine sex-specific genes and their expression. In addition, analysis of resequencing data can identify genomic difference between male and female fishes. In this study, we performed chromosome-level genome assembly in female Ancherythroculter nigrocauda fish having low heterozygosity using PacBio reads. High-throughput chromatin conformation capture (HiC) yielded a genome of size 1054.05 Mb, with a contig N50 length of 3.40 Mb and a scaffold N50 length of 42.68 Mb. In addition, we sequenced 5 female and 5 male A. nigrocauda samples and identified sex-specific regions on LG20 Furthermore, diet-specific amino acid mutation were found on 582 genes between herbivorous and carnivorous fishes, with 26 of them exhibiting significantly different expression patterns in the liver tissue of these two types of fishes. The chromosome-level genome assembly of A. nigrocauda provides valuable resources for conducting in-depth comparative genomic studies with immense applications in fish genetic breeding and farming. Similarly, the diet-specific amino acid mutations are useful in the breeding of new strains of carnivorous fishes with an herbivorous diet.

5.
Mol Biol Rep ; 48(8): 6035-6046, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341900

RESUMO

BACKGROUND: Anti-Mullerian hormone receptor type II (Amhr2) is a key receptor of Amh signaling in regulating gonad development. The amhr2 gene has been identified in numerous species, including a few teleost fishes. However, the roles of Amhr2 in Amh signaling in fish are poorly studied. METHODS AND RESULTS: In this study, an amhr2 homolog from obscure puffer (Takifugu obscurus) was identified, and its molecular characteristics were systematically analyzed. Expression analysis revealed that amhr2 was highly expressed in the gonads of adult pufferfish and significantly upregulated during sex differentiation. Significantly, a sex-linked SNP site was verified in obscure puffer amhr2. Females exhibited a homozygous genotype (C/C), while males possessed a heterozygous genotype (C/G), resulting in an amino acid variation (His/Asp384) in the kinase domain of Amhr2. Then, the functions of the different Amhr2 genotypes were further investigated. The male genotype protein (Amhr2D384) showed an enhanced ability to interact with the type I receptor (Bmpr1a) compared to the female genotype (Amhr2H384). The phosphorylation levels of Smads and activity of the target gene (id3) induced by the male genotype were also much higher than those induced by the female genotype. These results confirmed that the male genotype had an enhanced effect on the Amh signaling pathway compared with the female genotype. CONCLUSIONS: This study provides direct experimental evidence for the roles of different Amhr2 genotypes in pufferfish and suggests that amhr2 is responsible for male sex differentiation in obscure puffer.

6.
Front Genet ; 12: 691923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122529

RESUMO

Unisexual lineages are commonly considered to be short-lived in the evolutionary process as accumulation of deleterious mutations stated by Muller's ratchet. However, the gynogenetic hexaploid gibel carp (Carassius gibelio) with existence over 0.5 million years has wider ecological distribution and higher genetic diversity than its sexual progenitors, which provides an ideal model to investigate the underlying mechanisms on countering Muller's ratchet in unisexual taxa. Unlike other unisexual lineages, the wild populations of gibel carp contain rare and variable proportions of males (1-26%), which are determined via two strategies including genotypic sex determination and temperature-dependent sex determination. Here, we used a maternal gibel carp from strain F to be mated with a genotypic male from strain A+, a temperature-dependent male from strain A+, and a male from another species common carp (Cyprinus carpio), respectively. When the maternal individual was mated with the genotypic male, a variant of gynogenesis was initiated, along with male occurrence, accumulation of microchromosomes, and creation of genetic diversity in the offspring. When the maternal individual was mated with the temperature-dependent male and common carp, typical gynogenesis was initiated that all the offspring showed the same genetic information as the maternal individual. Subsequently, we found out that the genotypic male nucleus swelled and contacted with the female nucleus after fertilization although it was extruded from the female nucleus eventually, which might be associated with the genetic variation in the offspring. These results reveal that genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp, which provides insights into the evolution of unisexual reproduction.

7.
BMC Genomics ; 22(1): 328, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952209

RESUMO

BACKGROUND: Fatty liver has become a main problem that causes huge economic losses in many aquaculture modes. It is a common physiological or pathological phenomenon in aquaculture, but the causes and occurring mechanism are remaining enigmatic. METHODS: Each three liver samples from the control group of allogynogenetic gibel carp with normal liver and the overfeeding group with fatty liver were collected randomly for the detailed comparison of histological structure, lipid accumulation, transcriptomic profile, latent pathway identification analysis (LPIA), marker gene expression, and hepatocyte mitochondria analyses. RESULTS: Compared to normal liver, larger hepatocytes and more lipid accumulation were observed in fatty liver. Transcriptomic analysis between fatty liver and normal liver showed a totally different transcriptional trajectory. GO terms and KEGG pathways analyses revealed several enriched pathways in fatty liver, such as lipid biosynthesis, degradation accumulation, peroxidation, or metabolism and redox balance activities. LPIA identified an activated ferroptosis pathway in the fatty liver. qPCR analysis confirmed that gpx4, a negative regulator of ferroptosis, was significantly downregulated while the other three positively regulated marker genes, such as acsl4, tfr1 and gcl, were upregulated in fatty liver. Moreover, the hepatocytes of fatty liver had more condensed mitochondria and some of their outer membranes were almost ruptured. CONCLUSIONS: We reveal an association between ferroptosis and fish fatty liver for the first time, suggesting that ferroptosis might be activated in liver fatty. Therefore, the current study provides a clue for future studies on fish fatty liver problems.


Assuntos
Carpas , Fígado Gorduroso , Ferroptose , Animais , Fígado Gorduroso/genética , Transcriptoma
8.
Viruses ; 13(2)2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562288

RESUMO

Carassius auratus herpesvirus (CaHV) has been identified as a high-virulence pathogenic virus that infects aquatic animals, but the key factor for virus-host interaction is still unclear. Five Really interesting new genes (RING) finger proteins (39L, 52L, 131R, 136L, and 143R) of CaHV were screened to determine structural diversity. RING finger proteins were also predicted in other known fish herpesviruses, with an arrangement and number similar to CaHV. We performed multifaceted analyses of the proteins, including protein sizes, skeleton structures, subcellular localizations, and ubiquitination activities, to determine their precise roles in virus-host interactions. The five proteins were overexpressed and detected different levels of ubiquitination activities, and 143R showed the highest activity. Then, the prokaryotic expressed and purified full-length proteins (131R and 136L), RING domain isolates (131R12-43 and 136L45-87), and RING domain-deleted mutants (131RΔ12-43 and 136LΔ45-87) were prepared to detect their activities through ubiquitination assays. The results indicate that both full-length proteins and their isolates have activities that catalyze ubiquitination, and the full-length proteins possess higher activity than the isolates, but RING domain-deleted mutants lose their activities. Furthermore, the activities of the five proteins were verified as E3 ubiquitin ligase activity, showing that the RING domains determine the ubiquitination activity. These proteins present different subcellular localization. RING domain-deleted mutants showed similar subcellular localization with their full-length proteins, and all the isolates diffused in whole cells. The current results indicate that the sequence outside the RING domain determines subcellular localization and the level of ubiquitination activity, suggesting that the RING finger proteins of fish herpesviruses might have diverse functions in virus-host interaction.


Assuntos
Herpesviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Doenças dos Peixes/virologia , Carpa Dourada/virologia , Células HEK293 , Herpesviridae/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Espaço Intracelular/metabolismo , Mutação , Domínios RING Finger/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Virais/genética
9.
Dev Comp Immunol ; 119: 104019, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33482241

RESUMO

Interferon regulatory factor 7 (IRF7) is a key mediator in regulating the type Ι IFN response. Although irf7 has been identified in more than twenty fish species, alternative splicing has not been found in teleost irf7. Alternative splicing is an important mechanism expanding the transcriptomic and proteomic diversity, and has been found in several IRF family members. Here, three alternative splicing variants of irf7 were identified and characterized in obscure puffer. The first splicing transcript (Toirf7v1) was predicted to encode 428 amino acids with a DNA-binding domain (DBD), an interaction-associated domain (IAD) and a serine-rich domain (SRD). Toirf7v2 encoded 430 amino acids caused by the intron retention, and contained the whole conserved domains. Toirf7v3 encoded a truncated protein with 337 amino acids resulting from the alternative 5' splice-site selection, and lacked part of IAD domain and the entire SRD domain. Functional studies demonstrated that all of the three isoforms could activate the expression of type I IFN and IFN-stimulated genes (ISGs). Nevertheless, the two variants (Toirf7v2 and Toirf7v3) exhibited much less ability to induce transcription of IFN and ISGs compared to the Toirf7v1. Our findings suggest that these splicing variants may have distinct roles in the regulation of immune response. These results will be beneficial to understand the functional characteristics of irf7 variants in fish.

10.
Microb Biotechnol ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393737

RESUMO

Environmental bacteria have a great impact on fish gut microbiota, yet little is known as to where fish acquire their gut symbionts, and how gut microbiota response to the disturbance from environmental bacteria. Through the integrative analysis by community profiling and source tracking, we show that feed-associated bacteria can impose a strong disturbance upon the hindgut microbiota of cultured fugu. Consequently, marked alterations in the composition and function of gut microbiota in slow growth fugu were observed, implying a reduced stability upon bacterial disturbance from feed. Moreover, quantitative ecological analyses indicated that homogeneous selection and dispersal limitation largely contribute to the community stability and partial variations among hosts in the context of lower degree of disturbance. While the disturbance peaked, variable selection leads to an augmented interaction within gut microbiota, entailing community unstability and shift. Our findings emphasized the intricate linkage between feed and gut microbiota and highlighted the importance of resolving the feed source signal before the conclusion of comparative analysis of microbiota can be drawn. Our results provide a deeper insight into aquaculture of fugu and other economically important fishes and have further implications for an improved understanding of host-microbe interactions in the vertebrate gastrointestinal tract.

11.
BMC Genomics ; 22(1): 50, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446100

RESUMO

BACKGROUND: Loaches of Cobitinae, widely distributed in Eurasian continent, have high economic, ornamental and scientific value. However, the phylogeny of Cobitinae fishes within genera or family level remains complex and controversial. Up to now, about 60 Cobitinae mitogenomes had been deposited in GenBank, but their integrated characteristics were not elaborated. RESULTS: In this study, we sequenced and analyzed the complete mitogenomes of a female Cobits macrostigma. Then we conducted a comparative mitogenome analysis and revealed the conserved and unique characteristics of 58 Cobitinae mitogenomes, including C. macrostigma. Cobitinae mitogenomes display highly conserved tRNA secondary structure, overlaps and non-coding intergenic spacers. In addition, distinct base compositions were observed among different genus and significantly negative linear correlation between AT% and AT-skew were found among Cobitinae, genus Cobitis and Pangio mitogenomes, respectively. A specific 3 bp insertion (GCA) in the atp8-atp6 overlap was identified as a unique feature of loaches, compared to other Cypriniformes fish. Additionally, all protein coding genes underwent a strong purifying selection. Phylogenetic analysis strongly supported the paraphyly of Cobitis and polyphyly of Misgurnus. The strict molecular clock predicted that Cobitinae might have split into northern and southern lineages in the late Eocene (42.11 Ma), furthermore, mtDNA introgression might occur (14.40 Ma) between ancestral species of Cobitis and ancestral species of Misgurnus. CONCLUSIONS: The current study represents the first comparative mitogenomic and phylogenetic analyses within Cobitinae and provides new insights into the mitogenome features and evolution of fishes belonging to the cobitinae family.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Composição de Bases , Cipriniformes/genética , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Filogenia , RNA de Transferência/genética
12.
Mol Biol Evol ; 38(5): 1995-2013, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432361

RESUMO

Evolutionary fates of duplicated genes have been widely investigated in many polyploid plants and animals, but research is scarce in recurrent polyploids. In this study, we focused on foxl2, a central player in ovary, and elaborated the functional divergence in gibel carp (Carassius gibelio), a recurrent auto-allo-hexaploid fish. First, we identified three divergent foxl2 homeologs (Cgfoxl2a-B, Cgfoxl2b-A, and Cgfoxl2b-B), each of them possessing three highly conserved alleles and revealed their biased retention/loss. Then, their abundant sexual dimorphism and biased expression were uncovered in hypothalamic-pituitary-gonadal axis. Significantly, granulosa cells and three subpopulations of thecal cells were distinguished by cellular localization of CgFoxl2a and CgFoxl2b, and the functional roles and the involved process were traced in folliculogenesis. Finally, we successfully edited multiple foxl2 homeologs and/or alleles by using CRISPR/Cas9. Cgfoxl2a-B deficiency led to ovary development arrest or complete sex reversal, whereas complete disruption of Cgfoxl2b-A and Cgfoxl2b-B resulted in the depletion of germ cells. Taken together, the detailed cellular localization and functional differences indicate that Cgfoxl2a and Cgfoxl2b have subfunctionalized and cooperated to regulate folliculogenesis and gonad differentiation, and Cgfoxl2b has evolved a new function in oogenesis. Therefore, the current study provides a typical case of homeolog/allele diversification, retention/loss, biased expression, and sub-/neofunctionalization in the evolution of duplicated genes driven by polyploidy and subsequent diploidization from the recurrent polyploid fish.


Assuntos
Evolução Molecular , Proteína Forkhead Box L2/genética , Duplicação Gênica , Carpa Dourada/genética , Poliploidia , Animais , Feminino , Proteína Forkhead Box L2/metabolismo , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/metabolismo , Masculino , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/metabolismo
13.
Sci China Life Sci ; 64(7): 1031-1049, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33428077

RESUMO

Goldfish comprise around 300 different strains with drastically altered and aesthetical morphologies making them suitable models for evolutionary developmental biology. The dragon-eye strain is characterized by protruding eyes (analogous to those of Chinese dragons). Although the strain has been selected for about 400 years, the mechanism of its eye development remains unclear. In this study, a stable dragon-eye goldfish strain with a clear genetic background was rapidly established and studied. We found that upregulation of the PPAR signaling pathway accompanied by an increase in lipid accumulation might trigger the morphological and structural transformation of the eye in dragon-eye goldfish. At the developmental stage of proptosis (eye protrusion), downregulation of the phototransduction pathway was consistent with the structural defects and myopia of the dragon-eye strain. With the impairment of retinal development, cytokine-induced inflammation was activated, especially after proptosis, similar to the pathologic symptoms of many human ocular diseases. In addition, differentially expressed transcription factors were significantly enriched in the PAX and homeobox families, two well-known transcription factor families involved in eye development. Therefore, our findings reveal the dynamic changes in key pathways during eye development in dragon-eye goldfish, and provide insights into the molecular mechanisms underlying drastically altered eyes in goldfish and human ocular disease.

14.
PLoS Pathog ; 17(1): e1009220, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476326

RESUMO

The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.


Assuntos
Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Fator Regulador 1 de Interferon/metabolismo , Animais , Doenças Transmissíveis/metabolismo , Humanos , Fator Regulador 1 de Interferon/imunologia
15.
Sci China Life Sci ; 64(1): 77-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529288

RESUMO

Polyploids in vertebrates are generally associated with unisexual reproduction, but the direct consequences of polyploidy on sex determination system and reproduction mode remain unknown. Here, we synthesized a group of artificial octoploids between unisexual gynogenetic hexaploid Carassius gibelio and sexual tetraploid Carassius auratus. The synthetic octoploids were revealed to have more than 200 chromosomes, in which 50 chromosomes including the X/Y sex determination system were identified to transfer from sexual tetraploid C. auratus into the unisexual gynogenetic hexaploid C. gibelio. Significantly, a few synthetic octoploid males were found to be fertile, and one octoploid male was confirmed to regain sexual reproduction ability, which exhibits characteristics that are the same to sexual reproduction tetraploid males, such as 1:1 sex ratio occurrence, meiosis completion and euploid sperm formation in spermatogenesis, as well as normal embryo development and gene expression pattern during embryogenesis. Therefore, the current finding provides a unique case to explore the effect of sex determination system incorporation on reproduction mode transition from unisexual gynogenesis to sexual reproduction along with genome synthesis of recurrent polyploidy in vertebrates.

16.
Front Immunol ; 11: 2176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013914

RESUMO

Chemokine receptor cxcr4 and its ligand cxcl12 have evolved two paralogs in the teleost lineage. In this study, we have identified four duplicated cxcr4 and cxcl12 genes from hexaploid gibel carp, Carassius gibelio, respectively. Cgcxcr4bs and Cgcxcl12as were dynamically and differentially expressed in immune-related tissues, and significantly up-regulated in head kidney and spleen after crucian carp herpesvirus (CaHV) infection. Blocking Cxcr4/Cxcl12 axis by injecting AMD3100 brought more severe bleeding symptom and lower survival rate in CaHV-infected fish. AMD3100 treatment also suppressed the up-regulation of key antiviral genes in head kidney and spleen, and resulted in more acute replication of CaHV in vivo. Consistently, the similar suppression of up-regulated expression of key antiviral genes were also observed in CAB cells treated by AMD3100 after poly(I:C) stimulation. Finally, MAPK3 and JAK/STAT were identified as the possible pathways that CgCxcr4s and CgCxcl12s participate in to promote the antiviral response in vitro.


Assuntos
Carpas/genética , Quimiocina CXCL12/genética , Doenças dos Peixes/genética , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Receptores CXCR4/genética , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Sequência de Bases , Benzilaminas/farmacologia , Carpas/imunologia , Carpas/virologia , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/imunologia , Sequência Conservada , Ciclamos/farmacologia , DNA Complementar/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Duplicação Gênica , Regulação da Expressão Gênica , Rim Cefálico/imunologia , Rim Cefálico/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Especificidade de Órgãos , Filogenia , Poli I-C/farmacologia , Poliploidia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Receptores CXCR4/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/imunologia , Baço/imunologia , Baço/metabolismo , Replicação Viral
17.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194612, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745624

RESUMO

Unbalanced copper (Cu) homeostasis is associated with neurological development defects and diseases. However, the molecular mechanisms remain elusive. Here, central neural system (CNS) myelin defects and the down-regulated expression of WNT/NOTCH signaling and its down-stream mediator hoxb5b were observed in Cu2+ stressed zebrafish larvae. The loss/knockdown-of-function of hoxb5b phenocopied the myelin and axon defects observed in Cu2+ stressed embryos. Meanwhile, the activation of WNT/NOTCH signaling and ectopic expression of hoxb5b could rescue Cu induced myelin defects. Additionally, fam168b, similar to pou3f1/2, exhibited significant promoter hypermethylation and reduced expression in Cu2+ stressed embryos. The hypermethylated locus in fam168b promoter acted pivotally in its transcription, and the loss/knockdown of fam168b/pou3f1 also induced myelin defects. This study also demonstrated that fam168b/pou3f1 and hoxb5b axis acted in a seesaw manner during fish embryogenesis: Cu induced the down-regulated expression of the WNT&NOTCH-hoxb5b axis through the function of copper transporter cox17, coupled with the promoter methylation of genes fam168b/pou3f1, and its subsequent down-regulated expression through the function of another transporter atp7b, making joint contributions to myelin defects in embryos.


Assuntos
Cobre/metabolismo , Metilação de DNA , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Estresse Fisiológico , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Cobre/efeitos adversos , Desenvolvimento Embrionário/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica no Desenvolvimento , Mutação com Perda de Função , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Dev Comp Immunol ; 113: 103775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32735960

RESUMO

In mammals, tripartite motif (TRIM)-containing proteins are involved in interferon (IFN)-mediated antiviral response as pivotal players endowed with antiviral effects and modulatory capacity. Teleost fish have a unique subfamily of TRIM, called finTRIM (fish novel TRIM, FTR) generated by genus- or species-specific duplication of TRIM genes. Herein, four TRIM genes are identified from Epithelioma papulosum cyprini (EPC) cells, and phylogenetically close to the members of finTRIM, thus named FTREPC1, FTREPC2, FTREPC3 and FTREPC4. Despite high similarity in nucleotide sequence, FTREPC1/2 genes encode two proteins with a typically consecutive tripartite motif followed by a C-terminal B30.2 domain, while FTREPC3/4-encoding proteins retain only a RING domain due to early termination of translation. They are induced by poly(I:C), GCRV and SVCV as IFN-stimulated genes (ISGs), and this induction is severely impaired by blockade of STAT1 pathway and is dependent on a typical ISRE motif within the 5' untranslated regions (5'UTRs) of FTREPC1/2/3/4 genes. Whereas overexpression of FTREPC1/2/3/4 alone does not activate fish IFN promoters, overexpression of FTREPC1 or FTREPC2, rather than FTREPC3 and FTREPC4, significantly impairs intracellular poly(I:C)-triggered activation of fish IFN promoters. Consistently, FTREPC1/2 promote virus replication through negatively regulating IFN response. Our results provide evidence for the involvement of EPC finTRIM proteins in IFN antiviral response and insights into genus- or species-specific regulation of fish innate immune pathways.

19.
Biol Reprod ; 103(4): 769-778, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32697314

RESUMO

The reproductive process is usually controlled by the hypothalamic-pituitary-gonad axis in vertebrates, while Kiss/gonadotropin-releasing hormone (GnRH) system in the hypothalamus is required for mammalian reproduction but dispensable for fish reproduction. The regulation of follicle stimulating hormone/luteinizing hormone (LH) expression in fish species is still unknown. Here, we identified miR-200s on chromosome 23 (chr23-miR-200s) as important regulators for female zebrafish reproduction. Knockout of chr23-miR-200s (chr23-miR-200s-KO) resulted in dysregulated expression of luteinizing hormone beta lhb (luteinizing hormone beta) and some hormone genes in the pituitary as revealed by comparative transcriptome profiling, leading to failure of oocyte maturation and ovulation as well as defects in reproductive duct development. Chr23-miR-200s mainly expressed in the pituitary and regulated lhb expression by targeting the transcription repressor wt1a. Injection of human chorionic gonadotropin (hCG) could rescue the defects of oocyte maturation in chr23-miR-200s-KO zebrafish, whereas GnRH or LHRH-A2 could not, suggesting that Chr23-miR-200s regulated lhb expression in a GnRH-independent pathway. It was remarkable that either injection of carp pituitary extraction, or co-injection of hCG with synthetic oxytocin and vasotocin could greatly rescue the defects of both oocyte maturation and ovulation in chr23-miR-200s-KO zebrafish. Altogether, our findings highlight an important function of chr23-miR-200s in controlling oocyte maturation by regulation LH expression, and oxytocin and vasotocin are potentially responsible for the ovulation in fish species.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32454298

RESUMO

Grass carp is one of the most important freshwater aquaculture species in China. However, the mechanisms underlying the growth of muscle tissue in the fish are unclear. High-throughput RNA-Seq was used to analyze the transcriptome of grass carp muscle tissue between fast- and slow-growing fish family groups. Twenty-four individuals each from 4 fast-growing families and 4 slow-growing families were used to reduce background noise. 71 up-regulated and 35 down-regulated genes were identified in the differentially expressed genes (DEGs). GO and KEGG enrichment analyses revealed the DEGs were involved in the GH/IGF axis, calcium metabolism, protein and glycogen synthesis, oxygen transport, cytoskeletal and myofibrillar components. IGFBP1 was up-regulated in big fish while GHR2 was down-regulated. Glutamic pyruvate transaminase 2, an indicator of liver tissue damage, was down-regulated in big grass carp, which indicates that the fish was better adapted to an artificially formulated diet. GAPDH, the rate-limiting enzyme in glycolytic flux was highly expressed in fast-growing grass carp, reflecting enhanced carbohydrate metabolism. Higher expression of ALAS2 and myoglobin 1 in big grass carp, related to oxygen transport might promote aerobic exercise along with food intake and muscle growth. Genes for cytoskeletal and myofibrillar components such as tropomyosin, meromyosin, and troponin I were also up-regulated in big grass carp. These results provide valuable information about the key genes for use as biomarkers of growth in selective breeding programs for grass carp and contribute to our understanding of the molecular mechanisms and regulative pathways regulating growth in fish.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...