Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 9(1): 18095, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792272


On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.

Nano Lett ; 19(8): 4911-4918, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241962


Dipolar excitons offer a rich playground for both design of novel optoelectronic devices and fundamental many-body physics. Wide GaN/(AlGa)N quantum wells host a new and promising realization of dipolar excitons. We demonstrate the in-plane confinement and cooling of these excitons, when trapped in the electrostatic potential created by semitransparent electrodes of various shapes deposited on the sample surface. This result is a prerequisite for the electrical control of the exciton densities and fluxes, as well for studies of the complex phase diagram of these dipolar bosons at low temperature.

J Clin Microbiol ; 55(12): 3437-3443, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28978681


There is an urgent need for rapid, accurate detection and classification of carbapenemases. The current study evaluated the automated BD Phoenix CPO Detect and the manual bioMérieux Rapidec Carba NP tests for meeting these needs. Both tests were challenged with 294 isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii chosen to provide extreme diagnostic difficulty. Carbapenemases such as KPC, NMC-A, IMI, SME, NDM, SPM, IMP, VIM, and OXA-23, 40, 48, 58, 72, 181, and 232 were produced by 243 isolates and 51 carbapenemase-negative isolates included porin mutants and producers of extended-spectrum ß-lactamases (ESBLs), AmpCs, K1, and broad-spectrum ß-lactamases. Both tests exhibited high sensitivity of carbapenemase detection (>97%). Due to the highly challenging carbapenemase-negative isolates, specificities were lower than typical for evaluations involving mostly routine clinical isolates. BD Phoenix CPO Detect was 68.6% specific and Rapidec Carba NP was 60.8% to 78.4% specific, depending on how borderline results were interpreted. Only BD Phoenix CPO Detect classified carbapenemases. It correctly classified 85.0% of class A, 72.4% of class B, and 88.6% of class D carbapenemases. Importantly with respect to empirical therapy with new ß-lactamase inhibitor combinations such as ceftazidime/avibactam, no class B carbapenemases were misclassified as class A carbapenemases. Both tests offer advantages. Used alone, without initial susceptibility tests, Rapidec Carba NP can provide positive results for some isolates after only 10 to 30 min incubation. BD Phoenix CPO Detect provides novel advantages such as automated carbapenemase detection, inclusion in susceptibility panels to eliminate delays and subjectivity in initiating carbapenemase tests, and classification of most carbapenemases.

Proteínas de Bactérias/análise , Proteínas de Bactérias/classificação , Técnicas Bacteriológicas/métodos , Testes Diagnósticos de Rotina/métodos , beta-Lactamases/análise , beta-Lactamases/classificação , Acinetobacter baumannii/enzimologia , Enterobacteriaceae/enzimologia , Pseudomonas aeruginosa/enzimologia , Sensibilidade e Especificidade
Phys Rev E ; 94(4-1): 043310, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841593


We present a numerical approach for the solution of the dissipative Gross-Pitaevskii equation coupled to the reservoir equation governing the exciton-polaritons Bose-Einstein condensation. It is based on the finite difference method applied to space variables and on the fourth order Range-Kutta algorithm applied to the time variable. Numerical tests illustrate the stability and accuracy of the proposed scheme. Then results on the behavior of the condensate under large Gaussian pumping and around the threshold are presented. We determine the threshold through the particular behavior of the self-energy and characterize it by tracking the establishment time of the steady state.