Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(1): e1905504, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31736228

RESUMO

2D hexagonal boron nitride (hBN) is a wide-bandgap van der Waals crystal with a unique combination of properties, including exceptional strength, large oxidation resistance at high temperatures, and optical functionalities. Furthermore, in recent years hBN crystals have become the material of choice for encapsulating other 2D crystals in a variety of technological applications, from optoelectronic and tunneling devices to composites. Monolayer hBN, which has no center of symmetry, is predicted to exhibit piezoelectric properties, yet experimental evidence is lacking. Here, by using electrostatic force microscopy, this effect is observed as a strain-induced change in the local electric field around bubbles and creases, in agreement with theoretical calculations. No piezoelectricity is found in bilayer and bulk hBN, where the center of symmetry is restored. These results add piezoelectricity to the known properties of monolayer hBN, which makes it a desirable candidate for novel electromechanical and stretchable optoelectronic devices, and pave a way to control the local electric field and carrier concentration in van der Waals heterostructures via strain. The experimental approach used here also shows a way to investigate the piezoelectric properties of other materials on the nanoscale by using electrostatic scanning probe techniques.

2.
Nano Lett ; 19(12): 8683-8689, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31743649

RESUMO

We analyze the effect of twists on the electronic structure of configurations of infinite stacks of graphene layers. We focus on three different cases: an infinite stack where each layer is rotated with respect to the previous one by a fixed angle, two pieces of semi-infinite graphite rotated with respect to each other, and finally a single layer of graphene rotated with respect to a graphite surface. In all three cases, we find a rich structure, with sharp resonances and flat bands for small twist angles. The method used can be easily generalized to more complex arrangements and stacking sequences.

3.
Proc Natl Acad Sci U S A ; 115(52): 13174-13179, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30538203

RESUMO

Bilayer graphene twisted by a small angle shows a significant charge modulation away from neutrality, as the charge in the narrow bands near the Dirac point is mostly localized in a fraction of the Moiré unit cell. The resulting electrostatic potential leads to a filling-dependent change in the low-energy bands, of a magnitude comparable to or larger than the bandwidth. These modifications can be expressed in terms of new electron-electron interactions, which, when expressed in a local basis, describe electron-assisted hopping terms. These interactions favor superconductivity at certain fillings.

4.
Nanotechnology ; 29(30): 305302, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29737307

RESUMO

Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm-2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

5.
Phys Rev Lett ; 120(2): 026802, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376706

RESUMO

We study the existence of edge modes in gapped moiré superlattices of graphene monolayer ribbons on a hexagonal boron nitride substrate. We find that the superlattice bands acquire finite Chern numbers, which lead to a valley Hall effect. The presence of dispersive edge modes is confirmed by calculations of the band structure of realistic nanoribbons using tight binding methods. These edge states are only weakly sensitive to disorder, as short-range scattering processes lead to mean free paths of the order of microns. The results explain the existence of edge currents when the chemical potential lies within the bulk superlattice gap, and offer an explanation for existing nonlocal resistivity measurements in graphene ribbons on boron nitride.

6.
Phys Rev Lett ; 119(10): 107201, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949176

RESUMO

Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

7.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28621022

RESUMO

Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid-infrared (mid-IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon-phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon-phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon-phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid-infrared plasmon sources.

8.
Chem Soc Rev ; 46(15): 4387-4399, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28640314

RESUMO

This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.

9.
Nat Mater ; 16(2): 182-194, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27893724

RESUMO

In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

10.
J Phys Condens Matter ; 28(49): 495001, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27731311

RESUMO

We explore the electronic structure, orbital character and topological aspect of a monolayer MoS2 nanoribbon using tight-binding (TB) and low-energy ([Formula: see text]) models. We obtain a mid-gap edge mode in the zigzag ribbon of monolayer MoS2, which can be traced back to the topological properties of the bulk band structure. Monolayer MoS2 can be considered as a valley Hall insulator. The boundary conditions at armchair edges mix the valleys on the edges, and a gap is induced in the edge modes. The spin-orbit coupling in the valence band reduces the hybridization of the bulk states.

11.
Nano Lett ; 16(5): 2931-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27042865

RESUMO

Controlling the bandgap through local-strain engineering is an exciting avenue for tailoring optoelectronic materials. Two-dimensional crystals are particularly suited for this purpose because they can withstand unprecedented nonhomogeneous deformations before rupture; one can literally bend them and fold them up almost like a piece of paper. Here, we study multilayer black phosphorus sheets subjected to periodic stress to modulate their optoelectronic properties. We find a remarkable shift of the optical absorption band-edge of up to ∼0.7 eV between the regions under tensile and compressive stress, greatly exceeding the strain tunability reported for transition metal dichalcogenides. This observation is supported by theoretical models that also predict that this periodic stress modulation can yield to quantum confinement of carriers at low temperatures. The possibility of generating large strain-induced variations in the local density of charge carriers opens the door for a variety of applications including photovoltaics, quantum optics, and two-dimensional optoelectronic devices.

12.
Nat Commun ; 7: 11043, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984768

RESUMO

The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.

13.
J Phys Condens Matter ; 27(31): 313201, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26199038

RESUMO

One of the fascinating properties of the new families of two-dimensional crystals is their high stretchability and the possibility to use external strain to manipulate, in a controlled manner, their optical and electronic properties. Strain engineering, understood as the field that study how the physical properties of materials can be tuned by controlling the elastic strain fields applied to it, has a perfect platform for its implementation in the atomically thin semiconducting materials. The object of this review is to give an overview of the recent progress to control the optical and electronics properties of 2D crystals, by means of strain engineering. We will concentrate on semiconducting layered materials, with especial emphasis in transition metal dichalcogenides (MoS2, WS2, MoSe2 and WSe2). The effect of strain in other atomically thin materials like black phosphorus, silicene, etc, is also considered. The benefits of strain engineering in 2D crystals for applications in nanoelectronics and optoelectronics will be revised, and the open problems in the field will be discussed.

14.
Nanoscale ; 7(11): 4598-810, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25707682

RESUMO

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

15.
Phys Rev Lett ; 113(10): 106802, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238376

RESUMO

Black phosphorus exhibits a high degree of band anisotropy. However, we find that its in-plane static screening remains relatively isotropic for momenta relevant to elastic long-range scattering processes. On the other hand, the collective electronic excitations in the system exhibit a strong anisotropy. Band nonparabolicity, due to interband couplings, leads to a plasmon frequency which scales as nß, where n is the carrier concentration, and ß<1/2. Screening and charge distribution in the out-of-plane direction are also studied using a nonlinear Thomas-Fermi model.

16.
Nano Lett ; 14(8): 4581-6, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25019702

RESUMO

In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

17.
ACS Nano ; 8(8): 8350-6, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25033317

RESUMO

We report mid-infrared photocurrent spectra of graphene nanoribbon arrays on SiO2 dielectrics showing dual signatures of the substrate interaction. First, hybrid polaritonic modes of graphene plasmons and dielectric surface polar phonons produce a thermal photocurrent in graphene with spectral features that are tunable by gate voltage, nanoribbon width, and light polarization. Second, phonon polaritons associated with the substrate are excited, which indirectly heat up the graphene, leading to a graphene photocurrent with fixed spectral features. Models for other commonly used substrates show that the responsivity of graphene infrared photodetectors can be tailored to specific mid-IR frequency bands by the choice of the substrate.

18.
Phys Rev Lett ; 112(11): 116801, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702400

RESUMO

We study the midinfrared plasmonic response in Bernal-stacked bilayer graphene. Unlike its monolayer counterpart, bilayer graphene accommodates optically active phonon modes and a resonant interband transition at infrared frequencies. They strongly modify the plasmonic properties of bilayer graphene, leading to Fano-type resonances, giant plasmonic enhancement of infrared phonon absorption, a narrow window of optical transparency, and a new plasmonic mode at higher energy than that of the classical plasmon.

19.
Materials (Basel) ; 7(3): 1652-1686, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28788537

RESUMO

The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

20.
Nano Lett ; 13(11): 5361-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24083520

RESUMO

Controlling the bandstructure through local-strain engineering is an exciting avenue for tailoring optoelectronic properties of materials at the nanoscale. Atomically thin materials are particularly well-suited for this purpose because they can withstand extreme nonhomogeneous deformations before rupture. Here, we study the effect of large localized strain in the electronic bandstructure of atomically thin MoS2. Using photoluminescence imaging, we observe a strain-induced reduction of the direct bandgap and funneling of photogenerated excitons toward regions of higher strain. To understand these results, we develop a nonuniform tight-binding model to calculate the electronic properties of MoS2 nanolayers with complex and realistic local strain geometries, finding good agreement with our experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA