Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32652750

RESUMO

In the scientific race to build up photoactive electron donor-acceptor systems with increasing efficiencies, little is known about the interplay of their building blocks when integrated into supramolecular nanoscale arrays, particularly in aqueous environments. Here, we describe an aqueous donor-acceptor ensemble whose emergence as a nanoscale material renders it remarkably stable and efficient. We have focused on a tetracationic zinc phthalocyanine (ZnPc) featuring pyrenes, which shows an unprecedented mode of aggregation, driven by subtle cooperation between electrostatic and π-π interactions. Our studies demonstrate monocrystalline growth in solution and a symmetry-breaking intermolecular charge transfer between adjacent ZnPcs upon photoexcitation. Immobilizing a negatively charged fullerene (C 60 ) as electron acceptor onto the monocrystalline ZnPc assemblies was found to enhance the overall stability, and to suppress the energy-wasting charge recombination found in the absence of C 60 . Overall, the resulting artificial photosynthetic model system exhibits a high degree of preorganization, which facilitates efficient charge separation and subsequent charge transport.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32544289

RESUMO

The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, is ideally suited to install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Presumably as a result of error-correction and the presence of relatively rigid, curved π-systems in our key building blocks, we observed evidence for the size-selective functionalization of a mixture of SWCNTs of differing diameter. Specifically, a combination of UV/vis/NIR, Raman, photoluminescence excitation (PLE) and transient absorption spectroscopies indicated that the small (6,4)- SWCNTs were predominantly functionalized by the small macrocycles 1 2 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 2 2 . The observation of size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, because we were able to remove the disulfide macrocycles quantitatively under mild reductive conditions.

3.
J Am Chem Soc ; 142(29): 12596-12601, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32579355

RESUMO

Herein, we report a novel porphyrin/fullerene supramolecular cocrystal using a shape-persistent zinc-metalated porphyrin box (Zn-PB) and C60/C70. An unprecedented arrangement of a tightly packed square-planar core of four C60 or C70 surrounded by six cube-shaped Zn-PBs was observed. This unique packing promotes strong charge transfer (CT) interactions between the two components in the ground state and formation of charge-separated states with very long lifetimes in the excited state and enables unusually high photoconductivity. Quantum chemical calculations show that these features are enabled by delocalized orbitals that promote the CT, on one hand, and that are spatially separated from each other, on the other hand. This work may open a new avenue to design novel electron donor/acceptor architectures for artificial photosynthesis.

4.
ACS Nano ; 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32543172

RESUMO

In this contribution, we focused on integrating a phenylene-bridged dibenzodiazahexacene dimer (o-DAD), which is singlet fission (SF) active, onto single-walled carbon nanotubes (SWCNTs) as a low-energy sink for energetically low lying excited states that stem from SF. Spectroscopic and microscopic assays assisted in documenting that SWCNT/o-DAD feature high stability in THF as a result of electronic interactions between the individual constituents. For example, statistical Raman analysis underlined n-doping of SWCNTs in the presence of o-DAD. Fluorescence spectroscopy prompted an energy transfer between the individual constituents, a conclusion that was exclusively derived from the quenching of the o-DAD-centered fluorescence. Excitation spectroscopy with a focus on the SWCNT fluorescence confirmed independently this conclusion by showing o-DAD-centered features. Our work was rounded off by time-resolved transient absorption measurements with SWCNT/o-DAD, in which evidence was gathered for the sequential o-DAD-centered SF with an efficiency of 112% followed by a unidirectional energy transfer from o-DAD to SWCNT and a rapid deactivation. The energy transfer efficiency from SF products such as (S1S0)CT and 1(T1T1) exceeded the 100% threshold with values of 115%, which is conventionally found in energy transfer schemes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32492240

RESUMO

Red-emissive π-expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three-step strategy involving the preparation of diketopyrrolopyrrole followed by N-arylation and subsequent intramolecular palladium-catalyzed direct arylation. Comprehensive spectroscopic assays combined with first-principles calculations corroborated that both N-arylated and fused DPPs reach a locally excited (S1 ) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1 ) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.

6.
J Phys Chem A ; 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32567862

RESUMO

Triplet-excited-state energies of perylene-monoimides (PMIs) lie in the range 1.12 eV ± 2 meV when compared to singlet-excited-state energies of about 2.39 eV ± 2 meV; therefore, the corresponding naphthalene-linked PMI-Dimer was investigated as a novel singlet-fission (SF) material. Ultrafast transient absorption measurements demonstrated the (S1S0)-to-1(T1T1) transformation and the involvement of a mediating step in the overall 1(T1T1) formation. The intermediate is a charge-transfer state that links the initial (S1S0) with the final 1(T1T1), and imposes charge-transfer character on both, which are thus denoted (S1S0)CT and 1(T1T1)CT. At room temperature, the decorrelation and stability of 1(T1T1)CT is affected by the geminate triplet-triplet recombination (G-TTR) of the two triplets. Independent confirmation for G-TTR to afford up-converted (S1S0)UC in fsTA and nsTA measurements with PMI-Dimer, came from probing PMI-Monomer (T1)s in triplet-triplet annihilation up-conversion (TTA-UC). The G-TTR channel, active in the PMI-Dimer at room temperature, is suppressed by working at either low temperatures (∼140 K) or in polar solvents (benzonitrile): Both scenarios assist in stabilizing (T1T1)CT. As a consequence, the triplet quantum yields are 4.2% and 14.9% at room temperature and 140 K, respectively, in 2-methyltetrahydrofuran.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32472586

RESUMO

We report on the impact of the central heteroatom on structural, electronic, and spectroscopic properties of a series of spirofluorene-bridged heterotriangulenes and provide a detailed study on their aggregates. The in-depth analysis of their molecular structure by NMR spectroscopy and X-ray crystallography was further complemented by density functional theory calculations. With the aid of extensive photophysical analysis the complex fluorescence spectra were deconvoluted showing contributions from the peripheral fluorenes and the heteroaromatic cores. Beyond the molecular scale, we examined the aggregation behavior of these heterotriangulenes in THF/H2 O mixtures and analyzed the aggregates by static and dynamic light scattering. The excited-state interactions within the aggregates were found to be similar to those found in the solid state. A plethora of morphologies and superstructures were observed by scanning electron microscopy of drop-casted dispersions.

8.
J Am Chem Soc ; 142(26): 11497-11505, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413261

RESUMO

We report here a new extended tetrathiafulvalene (exTTF)-porphyrin scaffold, 2, that acts as a ball-and-socket receptor for C60 and C70. Supramolecular interactions between 2 and these fullerenes serve to stabilize 3D supramolecular organic frameworks (SOFs) in the solid state formally comprising peapod-like linear assemblies. The SOFs prepared via self-assembly in this way act as "tunable functional materials", wherein the complementary geometry of the components and the choice of fullerene play crucial roles in defining the conductance properties. The highest electrical conductivity (σ = 1.3 × 10-8 S cm-1 at 298 K) was observed in the case of the C70-based SOF. In contrast, low conductivity was seen for the SOF based on pristine 2 (σ = 5.9 × 10-11 S cm-1 at 298 K). The conductivity seen for the C70-based SOF approaches that seen for other TTF- and fullerene-based supramolecular materials despite the fact that the present systems are metal-free and constructed entirely from neutral building blocks. Transient absorption spectroscopic measurements corroborated the formation of charge-transfer states (i.e., 2δ+/C60δ- and 2δ+/C70δ-, respectively) rather than fully charge separated states (i.e., 2•+/C60•- and 2•+/C70•-, respectively) both in solution (toluene and benzonitrile) and in the solid state at 298 K. Such findings are considered consistent with an ability to transfer charges effectively over long distances within the present SOFs, rather than, for example, the formation of energetically trapped ionic species.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32412175

RESUMO

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)-a benchmark carbon nitride material in photocatalysis-by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet-triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1 O2 ) as a starting point to synthesis up to 25 different N-rich heterocycles.

10.
Angew Chem Int Ed Engl ; 59(31): 12779-12784, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32282973

RESUMO

Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.

11.
J Am Chem Soc ; 142(17): 7920-7929, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32243157

RESUMO

We report here the synthesis of two novel subporphyrins (SubPs), in which the macrocycle has been functionalized at its meso (1) or axial (2) position with tetracyanobuta-1,3-diene (TCBD)-aniline. In-depth spectroscopic, spectrometric, and electrochemical analyses were carried out with both of them, whose molecular structures were determined by single-crystal X-ray diffraction studies. In the case of 2, its Ra and Sa enantiomers were separable by chiral HPLC and presented a fairly good configurational stability at room temperature, which enabled determining the activation parameters for the thermally induced racemization. Conversely, the enantiomers' separation was unfeasible for 1 due to the conformational and/or configurational dynamics of the TCBD-aniline, a structural "flexibility" that could be drastically reduced at low temperatures. The physicochemical impact of placing the TCBD-aniline at either the axial or peripheral positions of SubPs is also rather significant. The HOMO-LUMO gap is reduced by as much as 0.35 eV in SubP-(TCBD-aniline)meso 1 (1.77 eV) and, in turn, enables an emissive charge-transfer (CT) state in virtually all environments. It is only in polar environments, where it links a local excitation with an indirect charge separation. In contrast, a much larger HOMO-LUMO gap of 2.12 eV in SubP-(TCBD-aniline)axial 2 disables an emissive CT state and enforces either an exciplex deactivation in apolar environments or a direct charge separation in polar environments.

12.
Chemistry ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293078

RESUMO

Owing to the electron donating and accepting nature of corroles (Corr) and phthalocyanines (Pc), respectively, we designed and developed two novel covalently linked Corr-Pc conjugates. The synthetic route allows the preparation of the target conjugates in satisfying yields. Comprehensive steady-state absorption, fluorescence, and electrochemical assays enabled insights onto energy and electron transfer processes upon photoexcitation. Coordinating a pyridine-appended subphthalocyanine (SubPc) to the Pc of the conjugate sets up the ways and means to realize the first example of an array composed by three different porphyrinoids, which drives a cascade of energy and charge transfer processes occur. Importantly, the SubPc assists in stabilizing the charge-separated state, that is, one-electron oxidized Corr and the one electron reduced Pc, upon photoexcitation by means of a reductive charge transfer to the SubPc. To the best of our knowledge, this is the first case of an intramolecular oxidation of a Corr within electron donor-acceptor conjugates by means of just photoexcitation. Moreover, the combination of Corr, Pc, and SubPc guarantees panchromatic absorption across the visible range of the solar spectrum, with the SubPc covering the "green gap" that usually affects porphyrinoids.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32129920

RESUMO

Herein, we present a new class of singlet fission (SF) materials based on diradicaloids of carbene scaffolds, namely cyclic (alkyl)(amino)carbenes (CAACs). Our modular approach allows the tuning of two key SF criteria: the steric factor and the diradical character. In turn, we modified the energy landscapes of excited states in a systematic manner to accommodate the needs for SF. We report the first example of intermolecular SF in solution by dimer self-assembly at cryogenic temperatures.

14.
J Am Chem Soc ; 142(17): 7898-7911, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32172566

RESUMO

We probed a series of multicomponent electron donor2-donor1-acceptor1 conjugates both experimentally and computationally. The conjugates are based on the light harvester and primary electron-donor zinc-porphyrin (ZnP, donor1) to whose ß positions a secondary electron-donor ferrocene (Fc, donor2) and the primary electron-acceptor C60-fullerene (C60, acceptor1) are attached. Linking all of them via p-phenylene-acetylene/acetylene bridges of different lengths to gain full control over shuttling electrons and holes between C60, ZnP, and Fc is novel. Different charge-separation, charge-transfer, and charge-recombination routes have been demonstrated, both by transient absorption spectroscopy measurements on the femto, pico-, nano-, and microsecond time scales and by multiwavelength and target analyses. The molecular wire-like nature of the p-phenylene-acetylene bridges as a function of C60-ZnP and ZnP-Fc distances is decisive in the context of generating distant and long-lived C60•--ZnP-Fc•+ charge-separated states. For the first time, we confirm the presence of two adjacent charge-transfer states, a C60-ZnP•--Fc•+ intermediate in addition to C60•--ZnP•+-Fc, en route to the distant C60•--ZnP-Fc•+ charge-separated state. Our studies demonstrate how the interplay of changes in the reorganization energy and the damping factor of the molecular bridges, in addition to variation in the solvent polarity, affect the outcome of the charge-transfer and corresponding rate constants. The different regions of the Marcus parabola are highly relevant in this matter: The charge recombination of, for example, the adjacent C60•--ZnP•+-Fc charge-separated state is located in the inverted region, while that of the distant C60•--ZnP-Fc•+ charge-separated state lies in the normal region. Here, the larger reorganization energy of Fc relative to ZnP makes the difference.

15.
Small ; : e1906745, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32003927

RESUMO

Here, the ability of a novel near-infrared dye to noncovalently self-assemble onto the surface of single-walled carbon nanotubes (SWCNTs) driven by charge-transfer interactions is demonstrated. Steady-state, Raman, and transient absorption spectroscopies corroborate the electron donating character of the near-infrared dye when combined with SWCNTs, in the form of fluorescence quenching of the excited state of the dye, n-doping of SWCNTs, and reversible charge transfer, respectively. Formation of the one-electron oxidized dye as a result of interactions with SWCNTs is supported by spectroelectrochemical measurements. The ultrafast electronic process in the near-infrared dye, once immobilized onto SWCNTs, starts with the formation of excited states, which decay to the ground state via the intermediate population of a fully charge-separated state, with characteristic time constants for the charge separation of 1.5 ps and charge recombination of 25 ps, as derived from the multiwavelength global analysis. Of great relevance is the fact that charge-transfer occurs from the hot excited state of the near-infrared dye to SWCNTs.

16.
Angew Chem Int Ed Engl ; 59(3): 1113-1117, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31647593

RESUMO

Singlet fission has emerged as a promising strategy to avoid the loss of extra energy through thermalization in solar cells. A family of dimers consisting of nitrogen-doped pyrene-fused acenes that undergo singlet fission with triplet quantum yields as high as 125 % are presented. They provide new perspectives for nitrogenated polycyclic aromatic hydrocarbons and for the design of new materials for singlet fission.

17.
Angew Chem Int Ed Engl ; 59(10): 3976-3981, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825548

RESUMO

Molybdenum disulfide nanosheets covalently modified with porphyrin were prepared and fully characterized. Neither the porphyrin absorption nor its fluorescence was notably affected by covalent linkage to MoS2 . The use of transient absorption spectroscopy showed that a complex ping-pong energy-transfer mechanism, namely from the porphyrin to MoS2 and back to the porphyrin, operated. This study reveals the potential of transition-metal dichalcogenides in photosensitization processes.

18.
Chem Soc Rev ; 49(1): 8-20, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808480

RESUMO

In natural photosynthesis, the protein backbone directs and positions primary and secondary electron donor and acceptor moieties in the reaction center to control the yield and kinetics of the sequential electron transfer reactions that transform light energy into chemical potential. Organization of the active cofactors is mainly driven by noncovalent interactions between the protein scaffold and the chromophores. Based on the natural system blueprint, several research efforts have investigated π-π stacking, ionic interactions as well as formation of hydrogen and coordinative bonds as noncovalent organizing principles for the assembly of electron donors and acceptors in artificial reaction centers. Introduction of supramolecular concepts into the organization of electron donor-acceptor in artificial photosynthetic models raises the possibility of applying template-directed synthesis techniques to assemble interlocked systems in which the photo-redox components are mechanically rather than covalently linked. Rotaxanes and catenanes are the leading examples of interlocked molecules, whose recent developments in synthetic chemistry have allowed their efficient preparation. Introduction of mechanical bonds into electron donor-acceptor systems allows the study of the interlocked components' submolecular motions and conformational changes, which are triggered by external stimuli, on the thermodynamic and kinetic parameters of photoinduced processes in artificial reaction centers. This Tutorial discusses our efforts in the synthesis and photophysical investigation of rotaxanes and catenanes decorated with peripheral electron donors and [60]fullerene as the acceptor. The assembly of our rotaxanes and catenanes is based on the classic 1,10-phenanthroline-copper(i) metal template strategy in conjunction with the virtues of the Cu(i)-catalyzed-1,3-dipolar cycloaddition of azides and alkynes (the CuAAC or "click" reaction) as the protocol for the final macrocyclization or stoppering reactions of the entwined precursors. Time-resolved emission and transient absorption experiments revealed that upon excitation, our multichromophoric rotaxanes and catenanes undergo a cascade of sequential energy and electron transfer reactions that ultimately yield charge separated states with lifetimes as long as 61 microseconds, thereby mimicking the functions of the natural systems. The importance of the Cu(i) ion (used to assemble the interlocked molecules) as an electronic relay in the photoinduced processes is also highlighted. The results of this research demonstrate the importance of the distinct molecular conformations adopted by rotaxanes and catenanes in the electron transfer dynamics and illustrate the versatility of interlocked molecules as scaffolds for the organization of donor-acceptor moieties in the design of artificial photosynthetic reaction centers.

19.
Small ; 16(2): e1903729, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778297

RESUMO

Precise control over the ratio of perylene bisimide (PBI) monomers and aggregates, immobilized on alumina nanoparticle (NP) surfaces, is demonstrated. Towards this goal, phosphonic acid functionalized PBI derivatives (PA-PBI) are shown to self-assemble into stoichiometrically mixed monolayers featuring aliphatic, glycolic, or fluorinated phosphonic acid ligands, serving as imbedding matrix (PA-M) to afford core-shell NPs. Different but, nevertheless, defined PBI monomer/aggregate composition is achieved by either the variation in the PA-PBI to PA-M ratios, or the utilization of different PA-Ms. Various steady-state as well as time-resolved spectroscopy techniques are applied to probe the core-shell NPs with respect to changes in their optical properties upon variations in the shell composition. To this end, the ratio between monomer and excimer-like emission assists in deriving information on the self-assembled monolayer composition, local ordering, and corresponding aggregate content. With the help of X-ray reflectivity measurements, accompanied by molecular dynamics simulations, the built-up of the particle shells, in general, and the PBI aggregation behavior, in particular, are explored in depth.

20.
J Am Chem Soc ; 142(4): 1895-1903, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31876150

RESUMO

A series of molecular precursors, containing one (1 and 3) or three (2 and 4) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable their π-π stacking onto low-dimensional nanocarbons including single-walled carbon nanotubes (SWCNTs) and nanographene (NG), their individualization, and their characterization. Microscopic (TEM, AFM) and spectroscopic (steady-state UV-vis and fluorescence, spectroelectrochemistry, and transient absorption measurements) techniques were at the forefront of the characterizations and were complemented by Raman spectroscopy and theoretical calculations. Of great importance is the Raman analysis, which corroborated n-doping of the nanocarbons due to the interactions with 1-4 when probed in the solid state. In solution, the situation is, however, quite different. Efficient charge separation was only observed for the graphene-based system NG/3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA