Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 31(26): e1806705, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30828903

RESUMO

Tribological contacts consume a significant amount of the world's primary energy due to friction and wear in different products from nanoelectromechanical systems to bearings, gears, and engines. The energy is largely dissipated in the material underneath the two surfaces sliding against each other. This subsurface material is thereby exposed to extreme amounts of shear deformation and often forms layered subsurface microstructures with reduced grain size. Herein, the elementary mechanisms for the formation of subsurface microstructures are elucidated by systematic model experiments and discrete dislocation dynamics simulations in dry frictional contacts. The simulations show how pre-existing dislocations transform into prismatic dislocation structures under tribological loading. The stress field under a moving spherical contact and the crystallographic orientation are crucial for the formation of these prismatic structures. Experimentally, a localized dislocation structure at a depth of ≈100-150 nm is found already after the first loading pass. This dislocation structure is shown to be connected to the inhomogeneous stress field under the moving contact. The subsequent microstructural transformations and the mechanical properties of the surface layer are determined by this structure. These results hold promise at guiding material selection and alloy development for tribological loading, yielding materials tailored for specific tribological scenarios.

2.
Nat Commun ; 7: 13341, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808099

RESUMO

Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.

3.
Nature ; 539(7630): 541-545, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882973

RESUMO

Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.

4.
Tribol Lett ; 63: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445442

RESUMO

The collision of two cylindrical hydrogen-free diamond-like carbon (DLC) asperities with approximately 60 % sp3 hybridization has been studied using classical molecular dynamics. The severity of the collision can be controlled by the impact parameter b that measures the width of the projected overlap of the two cylinders. For a cylinder radius of R = 23 nm, three collisions with b = 0.5 nm, b = 1 nm and b = 2.0 nm are compared. While for the two small b a single shear band between the collision partners and a strongly localized sp2/sp1 hybridised third-body zone between the asperities is observed, the b = 2 nm collision is accompanied by pronounced plastic deformation in both asperities that destabilize the metastable sp3-rich phase leading to a drastic increase in the amount of rehybridized tribomaterial. In addition, pronounced roughening of the cylinder surfaces, asymmetric material transfer and the generation of wear debris are found in this case. For the b = 0.5 and 1 nm collision, the evolution of third-body volume can be quantitatively described by a simple geometric overlap model that assumes a sliding-induced phase transformation localized between both asperities. For b = 2 nm, this model underestimates the third-body volume by more than 150 % indicating that plasticity has to be taken into account in simple geometric models of severe DLC/DLC asperity collisions.

5.
ACS Appl Mater Interfaces ; 8(24): 15809-19, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27246396

RESUMO

Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

6.
Adv Mater ; 28(28): 5865-70, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159205

RESUMO

Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented.

7.
Sci Adv ; 2(3): e1501585, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27051871

RESUMO

Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions.


Assuntos
Lubrificação , Modelos Teóricos , Propriedades de Superfície , Algoritmos , Pressão , Estresse Mecânico
8.
ACS Appl Mater Interfaces ; 6(11): 7986-90, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24839915

RESUMO

The morphological texturing of surfaces has demonstrated its high potential to maximize adhesion as well as to reduce friction and wear. A key to understanding such phenomena is a principle known as contact splitting. Here, we extend this concept to the static friction behavior of dimpled surfaces. Our results indicate that contact splitting does exist for such structures and that with certain dimple sizes and depths static friction values significantly exceeding those of untextured surfaces can be obtained. These results can be applied to all surfaces where friction forces are to be tuned, from nanoelectromechanical systems up to combustion engines.

9.
J Appl Crystallogr ; 46(Pt 4): 1145-1150, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24046507

RESUMO

Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques.

10.
Nat Mater ; 10(1): 34-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113152

RESUMO

Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond's widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp(3)-sp(2) order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

11.
Phys Rev Lett ; 105(7): 075502, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868057

RESUMO

We present a quantum-accurate multiscale study of how hydrogen-filled discoidal "platelet" defects grow inside a silicon crystal. Dynamical simulations of a 10-nm-diameter platelet reveal that H2 molecules form at its internal surfaces, diffuse, and dissociate at its perimeter, where they both induce and stabilize the breaking up of highly stressed silicon bonds. A buildup of H2 internal pressure is neither needed for nor allowed by this stress-corrosion growth mechanism, at odds with previous models. Slow platelet growth up to micrometric sizes is predicted as a consequence, making atomically smooth crystal cleavage possible in implantation experiments.

12.
Phys Rev Lett ; 97(17): 170201, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-17155444

RESUMO

We introduce a simple local atomic structure optimization algorithm which is significantly faster than standard implementations of the conjugate gradient method and often competitive with more sophisticated quasi-Newton schemes typically used in ab initio calculations. It is based on conventional molecular dynamics with additional velocity modifications and adaptive time steps. The surprising efficiency and especially the robustness and versatility of the method is illustrated using a variety of test cases from nanoscience, solid state physics, materials research, and biochemistry.


Assuntos
Algoritmos , Modelos Químicos , Fenretinida/química , Conformação Molecular , Termodinâmica
13.
Science ; 309(5740): 1545-8, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16141070

RESUMO

The ultrasmoothness of diamond-like carbon coatings is explained by an atomistic/continuum multiscale model. At the atomic scale, carbon ion impacts induce downhill currents in the top layer of a growing film. At the continuum scale, these currents cause a rapid smoothing of initially rough substrates by erosion of hills into neighboring hollows. The predicted surface evolution is in excellent agreement with atomic force microscopy measurements. This mechanism is general, as shown by similar simulations for amorphous silicon. It explains the recently reported smoothing of multilayers and amorphous transition metal oxide films and underlines the general importance of impact-induced downhill currents for ion deposition, polishing, and nanopattering.

14.
Science ; 301(5641): 1857-8, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-14512610

RESUMO

The plastic deformation of metals results in strain hardening, that is, an increase in the stress with increasing strain. Materials engineers can provide a simple approximate description of such deformation and hardening behavior. In his perspective, Gumbsch discusses work by Madec et al. who have undertaken the formidable task of computing the physical basis for the development of strain hardening by individually following the fate of all the dislocations involved. Their simulations show that the collinear dislocation interaction makes a substantial contribution to strain hardening. It is likely that such simulations will play an important role in guiding the development of future engineering descriptions of deformation and hardening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA