RESUMO
BACKGROUND: We discovered that vitiligo was associated with sexual dysfunction in clinical diagnosis and treatment; however, no further analysis had been performed due to a lack of data. OBJECTIVE: This study aimed to clarify the relationship between vitiligo and sexual dysfunction. METHODS: We searched six databases (PubMed, Embase, Cochrane, China National Knowledge Infrastructure, China Science and Technology Journal, and Wanfang Data Knowledge Service Platform) for nearly 40 years. RESULTS: According to the search strategy, 91 relevant studies were retrieved, of which 4 were included in the analysis. The Arizona Sexual Experience Scale (ASEX) score (mean difference [MD] 4.96, 95% confidence interval [CI] 2.78-7.13, p < 0.00001) was higher in the vitiligo group than in the control group. The Arabic version of the Female Sexual Function Index (AVFSFI) score (mean difference [MD] - 3.40, 95% confidence interval [CI] - 5.49 to -1.31, p = 0.001) was lower in the vitiligo group than in the control group. CONCLUSIONS: Patients with vitiligo were found to be at greater risk of sexual dysfunction. Moreover, the association between vitiligo and sexual dysfunction was stronger in women than in men.Key MessagesPatients with vitiligo were found to be at greater risk of sexual dysfunction.The association between vitiligo and sexual dysfunction was stronger in women than in men.
Assuntos
Disfunções Sexuais Fisiológicas , Vitiligo , Masculino , Humanos , Feminino , Vitiligo/complicações , Disfunções Sexuais Fisiológicas/epidemiologia , Disfunções Sexuais Fisiológicas/etiologia , China/epidemiologiaRESUMO
Designing thermal conductivity efficiently is one of the most important study fields for taking the advantages of woven composites. This paper presents an inverse method for the thermal conductivity design of woven composite materials. Based on the multi-scale structure characteristics of woven composites, a multi-scale model of inversing heat conduction coefficient of fibers is established, including a macroscale composite model, mesoscale fiber yarn model, microscale fiber and matrix model. In order to improve computational efficiency, the particle swarm optimization (PSO) algorithm and locally exact homogenization theory (LEHT) are utilized. LEHT is an efficient analytical method for heat conduction analysis. It does not require meshing and preprocessing but obtains analytical expressions of internal temperature and heat flow of materials by solving heat differential equations and combined with Fourier's formula, relevant thermal conductivity parameters can be obtained. The proposed method is based on the idea of optimum design ideology of material parameters from top to bottom. The optimized parameters of components need to be designed hierarchically, including: (1) combing theoretical model with the particle swarm optimization algorithm at the macroscale to inverse parameters of yarn; (2) combining LEHT with the particle swarm optimization algorithm at the mesoscale to inverse original fiber parameters. To identify the validation of the proposed method, the present results are compared with given definite value, which can be seen that they have a good agreement with errors less than 1%. The proposed optimization method could effectively design thermal conductivity parameters and volume fraction for all components of woven composites.
RESUMO
The low formation energies of metal halide perovskites endow them with potential luminescent materials for applications in information encryption and decryption. However, reversible encryption and decryption are greatly hindered by the difficulty in robustly integrating perovskite ingredients into carrier materials. Here, we report an effective strategy to realize information encryption and decryption by reversible synthesis of halide perovskites, on the lead oxide hydroxide nitrates (Pb13O8(OH)6(NO3)4) anchored zeolitic imidazolate framework composites. Benefiting from the superior stability of ZIF-8 in combination with the strong bond between Pb and N evidenced by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy, the as-prepared Pb13O8(OH)6(NO3)4-ZIF-8 nanocomposites (Pb-ZIF-8) can withstand common polar solvent attack. Taking advantage of blade-coating and laser etching, the Pb-ZIF-8 confidential films can be readily encrypted and subsequently decrypted through reaction with halide ammonium salt. Consequently, multiple cycles of encryption and decryption are realized by quenching and recovery of the luminescent MAPbBr3-ZIF-8 films with polar solvents vapor and MABr reaction, respectively. These results provide a viable approach to integrate the state-of-the-art materials perovskites and ZIF for applications in information encryption and decryption films with large scale (up to 6 × 6 cm2), flexibility, and high resolution (approximate 5 µm line width).
RESUMO
Determining drug-drug interactions (DDIs) is an important part of pharmacovigilance and has a vital impact on public health. Compared with drug trials, obtaining DDI information from scientific articles is a faster and lower cost but still a highly credible approach. However, current DDI text extraction methods consider the instances generated from articles to be independent and ignore the potential connections between different instances in the same article or sentence. Effective use of external text data could improve prediction accuracy, but existing methods cannot extract key information from external data accurately and reasonably, resulting in low utilization of external data. In this study, we propose a DDI extraction framework, instance position embedding and key external text for DDI (IK-DDI), which adopts instance position embedding and key external text to extract DDI information. The proposed framework integrates the article-level and sentence-level position information of the instances into the model to strengthen the connections between instances generated from the same article or sentence. Moreover, we introduce a comprehensive similarity-matching method that uses string and word sense similarity to improve the matching accuracy between the target drug and external text. Furthermore, the key sentence search method is used to obtain key information from external data. Therefore, IK-DDI can make full use of the connection between instances and the information contained in external text data to improve the efficiency of DDI extraction. Experimental results show that IK-DDI outperforms existing methods on both macro-averaged and micro-averaged metrics, which suggests our method provides complete framework that can be used to extract relationships between biomedical entities and process external text data.
RESUMO
The control of morphology, structure and composition of metal-organic frameworks derived metal-nitrogen doped porous carbon (M-N-C) with high precision and accuracy is essential for the catalytic performance. While single-atom or small-sized nanometer catalysts show notable effects in catalysis, one catalyst combining the advantages of single-atom and nanometer catalysts may cultivate more benefits. Herein, we designed and successfully fabricated a series of Fe-doped ZIF-x with different morphologies (cubeâtruncated hexahedronâtruncated octahedron) in one pot by simply adjusting the adding amount of vitamin C. After high-temperature calcination, Fe3C integrated with Fe single-atom planted in N-doped carbon (FeSA/FeNC-N-C-x) with various morphology, structure and composition could be acquired. Among them, FeSA/FeNC-N-C-0.75 exhibited the best catalytic performance for the transfer hydrogenation of halogenated nitrobenzenes with N2H4·H2O under room temperature. Acid-leaching tests, poisoning experiments, and the density functional theory calculations showed that Fe3C integrated with Fe single-atom had a better catalytic effect than the separated Fe3C or Fe single-atom.
RESUMO
The electrochemical synthesis of hydrogen peroxide (H2O2) via a two-electron (2e-) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. However, the development of efficient electrocatalysts is still facing lots of challenges like insufficient understanding of active sites. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst (PCC) for H2O2 electrochemical production. The optimized PCC900 exhibits unprecedented activity and selectivity, of which the onset potential reaches 0.83 V vs. reversible hydrogen electrode in 0.1 M KOH and the H2O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2e- ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.
RESUMO
In this work, we design and synthesize 2,2'-(7,9-dimethyl-2,4,6,8-tetraoxo-6,7,8,9-tetrahydropyrimido[5,4-g]pteridine-1,3(2H,4H)-diyl)bis(N,N-bis(2-chloroethyl)acetamide) (PT-MCA) as a novel DNA intercalator and potential antitumor agent. Electrochemical analysis reveals the redox process of PT-MCA on the electrode surface. The bioelectrochemical sensors are obtained by modifying the surface of GCE with calf thymus DNA (ctDNA), poly (dG), poly (dA), and G-quadruplex, respectively. The DNA oxidative damage induced by PT-MCA is investigated by comparing the peak intensity change of dGuo and dAdo and monitoring the peaks of the oxidation products of guanine and/or adenine (8-oxoGua and/or 2,8-oxoAde). UV-vis absorption and fluorescence spectra and gel electrophoresis are further employed to understand the intercalation of PT-MCA into DNA base pairs. Moreover, PT-MCA is proved to exhibit stronger anti-proliferation activity than mitoxantrone against both 4T1 and B16-F10 cancer cells. At last, the oxidative damage of PT-MCA toward ctDNA is not interfered by the coexistence of ions and also can be detected in real serums.
RESUMO
Designer chromosomes are artificially synthesized chromosomes. Nowadays, these chromosomes have numerous applications ranging from medical research to the development of biofuels. However, some chromosome fragments can interfere with the chemical synthesis of designer chromosomes and eventually limit the widespread use of this technology. To address this issue, this study aimed to develop an interpretable machine learning framework to predict and quantify the synthesis difficulties of designer chromosomes in advance. Through the use of this framework, six key sequence features leading to synthesis difficulties were identified, and an eXtreme Gradient Boosting model was established to integrate these features. The predictive model achieved high-quality performance with an AUC of 0.895 in cross-validation and an AUC of 0.885 on an independent test set. Based on these results, the synthesis difficulty index (S-index) was proposed as a means of scoring and interpreting synthesis difficulties of chromosomes from prokaryotes to eukaryotes. The findings of this study emphasize the significant variability in synthesis difficulties between chromosomes and demonstrate the potential of the proposed model to predict and mitigate these difficulties through the optimization of the synthesis process and genome rewriting.
RESUMO
Thiamethoxam, a nicotinic pesticide used worldwide, can cause great harm to the environment and even to human health, and aptamers, known as chemical antibodies, have high affinity and specificity for the target, as well as great potential in detecting small molecules such as pesticides. In this paper, we report a highly sensitive biosensor system for thiamethoxam residue detection based on aptamer technology. After 15 rounds of screening with the pressurized GO-SELEX technology, we found that the aptamer libraries of the 5th and 9th rounds showed high affinity by the capture method. Four candidate aptamers were obtained by high-throughput sequencing and secondary structure prediction. Among them, the aptamer named Thi-5R-18 from the 5th round was demonstrated to possess the highest affinity by isothermal titration calorimetry, with a dissociation constant (Kd) of 4.935 × 10-5 M. The results of molecular docking showed that thiamethoxam and Thi-5R-18 were combined with bases G-15, A-19, and T-71 through hydrogen bonding and π-π interaction.Thi-5R-18 was used as a recognition element to construct a AuNPs colorimetric aptasensor, achieving an ultralow detection limit of 0.37 nM. More importantly, this colorimetric aptasensor can be used for quantitative detection of thiamethoxam on tea leaves, with a recovery of 96.94%~105.86%. This study provides a highly sensitive biosensor for detection of thiamethoxam residue.
Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Humanos , Aptâmeros de Nucleotídeos/química , Tiametoxam , Ouro/química , Simulação de Acoplamento Molecular , Técnica de Seleção de Aptâmeros/métodos , Nanopartículas Metálicas/químicaRESUMO
The effective detection of biomarkers associated with hepatocellular carcinoma (HCC) is of great importance. Golgi protein 73 (GP73), a serum biomarker of HCC, has better diagnostic value than Alpha-fetoprotein (AFP) has been reported. In this paper, highly accurate fluorescence sensing platform for detecting GP73 was constructed based on fluorescence resonance energy transfer (FRET), in which nitrogen-doped graphene quantum dots (NGQDs) labelling with GP73 aptamer (GP73Apt) was used as fluorescence probe, and molybdenum disulfide @ reduced graphene oxide (MoS2@RGO) nanosheets was used as fluorescent receptors. MoS2@RGO nanosheets can quench the fluorescence of NGQDs-GP73Apt owing to FRET mechanisms. In the presence of GP73, the NGQDs-GP73Apt specifically bound with GP73 to from the deployable structures, making NGQDs-GP73Apt far away from MoS2@RGO nanosheets, blocking the FRET process, resulting in fluorescence recovery of NGQDs-GP73Apt. Under optimal conditions, the recovery intensity of fluorescence in the detection system is linearly related to the concentration of GP73 in the range of 5 ng/mL - 100 ng/mL and the limit of detection is 4.54 ng/mL (S/N = 3). Moreover, detection of GP73 was performed in human serum samples with good recovery (97.21-100.83%). This platform provides a feasible method for the early diagnosis of HCC, and can be easily extended to the detection of other biomarkers.
RESUMO
Polyploids recurrently emerge in angiosperms, but most polyploids are likely to go extinct before establishment due to minority cytotype exclusion, which may be specifically a constraint for dioecious plants. Here we test the hypothesis that a stable sex-determination system and spatial/ecological isolation facilitate the establishment of dioecious polyploids. We determined the ploidy levels of 351 individuals from 28 populations of the dioecious species Salix polyclona, and resequenced 190 individuals of S. polyclona and related taxa for genomic diversity analyses. The ploidy survey revealed a frequency 52% of tetraploids in S. polyclona, and genomic k-mer spectra analyses suggested an autopolyploid origin for them. Comparisons of diploid male and female genomes identified a female heterogametic sex-determining factor on chromosome 15, which probably also acts in the dioecious tetraploids. Phylogenetic analyses revealed two diploid clades and a separate clade/grade of tetraploids with a distinct geographic distribution confined to western and central China, where complex mountain systems create higher levels of environmental heterogeneity. Fossil-calibrated phylogenies showed that the polyploids emerged during 7.6-2.3 million years ago, and population demographic histories largely matched the geological and climatic history of the region. Our results suggest that inheritance of the sex-determining system from the diploid progenitor as intrinsic factor and spatial isolation as extrinsic factor may have facilitated the preservation and establishment of polyploid dioecious populations.
RESUMO
The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed â¼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0â V and 3,000 cycles with a normal voltage window of 0.8-1.9â V at a current density of 2â A g-1 .
RESUMO
Mass gatherings provide conditions for the transmission of infectious diseases and pose complex challenges to public health. Faced with the COVID-19 pandemic, governments and health experts called for suspension of gatherings in order to reduce social contact via which virus is transmitted. However, few studies have investigated the contribution of mass gatherings to COVID-19 transmission in local communities. In Hong Kong, the coincidence of the relaxation of group gathering restrictions with demonstrations against the National Security Law in mid-2020 raised concerns about the safety of mass gatherings under the pandemic. Therefore, this study examines the impacts of mass gatherings on the local transmission of COVID-19 and evaluates the importance of social distancing policies. With an aggregated dataset of epidemiological, city-level meteorological and socioeconomic data, a Synthetic Control Method (SCM) is used for constructing a 'synthetic Hong Kong' from over 200 Chinese cities. This counterfactual control unit is used to simulate COVID-19 infection patterns (i.e., the number of total cases and daily new cases) in the absence of mass gatherings. Comparing the hypothetical trends and the actual ones, our results indicate that the infection rate observed in Hong Kong is substantially higher than that in the counterfactual control unit (2.63% vs. 0.07%). As estimated, mass gatherings increased the number of new infections by 62 cases (or 87.58% of total new cases) over the 10-day period and by 737 cases (or 97.23%) over the 30-day period. These findings suggest the necessity of tightening social distancing policies, especially the prohibition on group gathering regulation (POGGR), to prevent and control COVID-19 outbreaks.
Assuntos
COVID-19 , Eventos de Massa , Política Pública , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Hong Kong/epidemiologia , Pandemias/prevenção & controle , Distanciamento FísicoRESUMO
Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation. Autophagy plays a central role in N recycling and holds potential to improve N utilization, and many AuTophaGy-related genes (ATGs) are involved in the autophagy process. Here, CsATG3a was identified from Camellia sinensis, and the functions involved in N utilization was characterized in arabidopsis (Arabidopsis thaliana). The transcript level of CsATG3a in tea leaves increases with their maturity. Relative to the wild type (WT) arabidopsis, two CsATG3a-overexpressing (CsATG3a-OE) lines exhibited improved vegetative growth, delayed reproductive stage, and upregulated expression of AtATGs (AtATG3, AtATG5 and AtATG8b) in a low N (LN) hydroponic condition. The expression levels of AtNRT1.1, AtNRT2.1, AtNRT2.2, AtAMT1.1 and AtAMT1.3 for N uptake and transport in roots were all significantly higher in CsATG3a-OE lines compared with those in the WT under LN. Meanwhile, the overexpression of CsATG3a in arabidopsis also increased N and dry matter allocation into both rosette leaves and roots under LN. Additionally, compared with WT, improved HI (harvest index), NHI (N harvest index), NUtE (N utilization efficiency) and NUE (N use efficiency) of CsATG3a-OE lines were further confirmed in a low-N soil cultured experiment. Together, these results concluded that CsATG3a is involved in N recycling and enhances tolerance to LN, indicating that CsATG3a holds potential promise to improve NUE in tea plant.
RESUMO
Innate immunity represents one of the main host responses to viral infection.1-3 STING (Stimulator of interferon genes), a crucial immune adapter functioning in host cells, mediates cGAS (Cyclic GMP-AMP Synthase) sensing of exogenous and endogenous DNA fragments and generates innate immune responses.4 Whether STING activation was involved in infection and replication of enterovirus remains largely unknown. In the present study, we discovered that human enterovirus A71 (EV-A71) infection triggered STING activation in a cGAS dependent manner. EV-A71 infection caused mitochondrial damage and the discharge of mitochondrial DNA into the cytosol of infected cells. However, during EV-A71 infection, cGAS-STING activation was attenuated. EV-A71 proteins were screened and the viral protease 2Apro had the greatest capacity to inhibit cGAS-STING activation. We identified TRAF3 as an important factor during STING activation and as a target of 2Apro. Supplement of TRAF3 rescued cGAS-STING activation suppression by 2Apro. TRAF3 supported STING activation mediated TBK1 phosphorylation. Moreover, we found that 2Apro protease activity was essential for inhibiting STING activation. Furthermore, EV-D68 and CV-A16 infection also triggered STING activation. The viral protease 2Apro from EV-D68 and CV-A16 also had the ability to inhibit STING activation. As STING activation prior to EV-A71 infection generated cellular resistance to EV-A71 replication, blocking EV-A71-mediated STING suppression represents a new anti-viral target.
Assuntos
Enterovirus Humano A , Proteínas de Membrana , Fator 3 Associado a Receptor de TNF , Humanos , Antígenos Virais , Enterovirus Humano A/fisiologia , Nucleotidiltransferases/genética , Fator 3 Associado a Receptor de TNF/genética , Proteases Virais , Imunidade InataRESUMO
Background: Although the overall global incidence of gastric cancer has been declining, the number of new cases in people under the age of 50 is increasing, which is related to metastasis, late pathological stages, and poor prognosis. There is a scarcity of large-scale studies to evaluate and predict distant metastasis in patients with early-onset gastric cancer. Methods: From January 2010 to December 2019, data on early-onset GC patients undergoing surgery were gathered from the Surveillance, Epidemiology, and End Results (SEER) database. We investigated the independent risk factors for distant metastasis in patients with early-onset gastric cancer. Based on these risk factors, we developed a nomogram to predict distant metastasis. The model underwent internal validation on the test set and external validation on 205 patients from the First Affiliated Hospital of Sun Yat-sen University and the seventh Affiliated Hospital of Sun Yat-sen University. The novel nomogram model was then evaluated using the receiver operating characteristic (ROC) curve, calibration, the area under the curve (AUC), and decision curve analysis (DCA). The training set nomogram score was used to classify the different risk clusters of distant metastasis. Results: Our study enrolled 2217 patients after establishing the inclusion and exclusion criteria, with 1873 having no distant metastasis and 344 having distant metastasis. The tumor size, total lymph nodes, whether or not receiving radiotherapy and chemotherapy, T stage, and N stage were significant predictors of advanced distant metastasis (p < 0.05). The AUC of the ROC analysis demonstrated our model's high accuracy. Simultaneously, the prediction model shows high stability and clinical practicability in the calibration curve and DCA analysis. Conclusions: We developed an innovative nomogram containing clinical and pathological characteristics to predict distant metastasis in patients younger than 50 years old with gastric cancer. The tool can alert clinicians about distant metastasis and help them develop more effective clinical treatment plans.
RESUMO
Background: Certain genetic and non-genetic factors may cause damaged platelet inhibition by clopidogrel. We aimed to determine the effect of cytochrome P4502C19 (CYP2C19) polymorphism, along with other clinical factors, on the platelet response to clopidogrel in patients with acute ischemic stroke (AIS). Methods: A total of 214 patients with AIS receiving clopidogrel at a maintenance dose of 75 mg daily admitted to the Ningbo First Hospital between 1 January 2020, and 31 December 2021, were enrolled. Platelet aggregation analysis was performed to determine clopidogrel resistance. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to determine CYP2C19 genotype. Other laboratory data on complete blood count and biochemical parameters were taken from patient medical files. Results: Among the 214 AIS patients treated with clopidogrel in the Ningbo population, the incidence of clopidogrel resistance was approximately 43.9%, and the distribution of CYP2C19 genotypes was highest for CYP2C19(*1/*2) (43.0%), followed by CYP2C19 (*1/*1) (38.8%). The distribution of alleles *1, *2, *3, and *17 was 62.1, 32.5, 4.9, and 0.5%, respectively. A chi-squared test showed that the gene frequencies of alleles *2 and *3 were significantly higher in the clopidogrel-resistant group than in the clopidogrel-sensitive group (p < 0.001), and a Mann-Whitney U-test showed that high HCY levels were significantly correlated with clopidogrel resistance (p < 0.001). Multi-factor logistic regression analysis demonstrated that mutant heterozygous genotype [OR 2.893; 95% confidence interval (CI) 1.456-5.748; p = 0.002], mutant homozygous genotype (OR 4.741; 95% CI 1.828-12.298; p = 0.001), and high HCY levels (OR 1.209; 95% CI 1.072-1.362; p = 0.002) were significantly associated with clopidogrel resistance. Conclusion: According to our results, carrying the CYP2C19*2/*3 allele and high HCY levels are independent risk factors for clopidogrel resistance after clopidogrel therapy in patients with AIS. These two factors should be considered prior to clopidogrel administration.
RESUMO
Single-phase multiferroics suffer from a fundamental contradiction between polarity and magnetism in d0 electronic configuration, motivating studies of unconventional ferroelectricity in magnetic oxides. However, low critical temperature and polarization still need to be overcome. Here, it is reported that the switchable polarization behavior at room temperature in [(La2 NiMnO6 )/(La2 CoMnO6 )]n double-perovskite magnetic superlattice films is achieved by engineering a microstructure with gradient strains, and the ferromagnetic Curie temperature did not show a rapid decrease. The synergy of gradient strains and superlattice components plays a decisive role in inducing ferroelectricity via the tilting or rotation of various oxygen octahedra. Such distortion responses to gradient strains are accompanied by slight magnetic fluctuations, maximizing the preservation of the initial magnetic exchange interactions, which alleviates the contradiction of multiferroic coexistence to a certain extent. This work confirms the room-temperature ferroelectricity in double-perovskite superlattices and provides a preferred strategy for confronting the difficulty of multiferroic coexistence in single-phase materials.
RESUMO
Transition metal-nitrogen-carbon (MNC) type catalysts have been considered a promising alternative to noble metals for oxygen reduction reaction (ORR) electrocatalysis. Nevertheless, poor stabilities of MNC catalysts in acidic solutions limit their commercialization. In this study, we design and synthesize novel three-dimensional (3D) cobalt (Co) nanoparticles encapsulated in ultrahigh content of boron (B) and nitrogen (N) -doped hierarchically porous carbon nanofibers (denoted as Co@BN-PCNFs) by carbonizing the 3D acetic acid/cobalt nitrate/4-hydroxybenzeneboronic acid/polyvinylpyrrolidone precursor networks woven using electrospinning method under a nitrogen atmosphere. The optimal Co@BN-PCNFs-900 catalyst has abundant micro/mesopores and numerous topological defects and exhibits the largest surface area. Under the synergistic effect of oxygen-containing acetic acid molecules and the electrospinning technology, 5.87 at.% of B and 5.91 at.% of N atoms were doped into carbon nanofibers. Specifically, B/N electrocatalytic active centers (including BC3, pyridinic-N/CoNC, pyrrolic-N, and graphitic-N) of approximately 8.70 at.% were successfully introduced into the skeletons of Co@BN-PCNFs-900. In 0.1 M KOH, the ORR onset potential (Eonset) and half-wave potential (E1/2) of Co@BN-PCNFs-900 were â¼ 64 and â¼ 63 mV, respectively, more positive than those of 20 wt% Pt/C. Additionally, in 0.5 M H2SO4, the ORR Eonset and E1/2 values of Co@BN-PCNFs-900 were only â¼ 11 and â¼ 7 mV, respectively, more negative than those of 20 wt% Pt/C. As the 3D hierarchically porous architectures, topological carbon edges, BC3, and partial NC/CoNC are relatively stable, the Co@BN-PCNFs-900 exhibits excellent stability toward ORR catalysis in both acidic and basic media. These favorable properties of Co@BN-PCNFs-900 nanofibers make them the best non-noble metal-based carbonaceous electrocatalysts for ORR in acidic electrolytes.
RESUMO
Vegetation change can alter surface energy balance and subsequently affect the local climate. This biophysical impact has been well studied for forestation cases, but the sign and magnitude for persistent earth greening remain controversial. Based on long-term remote sensing observations, we quantify the unidirectional impact of vegetation greening on radiometric surface temperature over 2001-2018. Here, we show a global negative temperature response with large spatial and seasonal variability. Snow cover, vegetation greenness, and shortwave radiation are the major driving factors of the temperature sensitivity by regulating the relative dominance of radiative and non-radiative processes. Combined with the observed greening trend, we find a global cooling of -0.018 K/decade, which slows down 4.6 ± 3.2% of the global warming. Regionally, this cooling effect can offset 39.4 ± 13.9% and 19.0 ± 8.2% of the corresponding warming in India and China. These results highlight the necessity of considering this vegetation-related biophysical climate effect when informing local climate adaptation strategies.