Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 368: 26-36, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776389

RESUMO

Cardiac dysfunction is a vital complication during endotoxemia (ETM). Accumulating evidence suggests that enhanced glycolytic metabolism promotes inflammatory and myocardial diseases. In this study, we performed deep mRNA sequencing analysis on the hearts of control and lipopolysaccharide (LPS)-challenged mice (40 mg/kg, i.p.) and identified that the glycolytic enzyme, 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase 3 (PFKFB3) might play an indispensable role in ETM-induced cardiac damage. Quantitative real-time PCR validated the transcriptional upregulation of PFKFB3 in the myocardium of LPS-challenged mice and immunoblotting and immunostaining assays confirmed that LPS stimulation markedly increased the expression of PFKFB3 at the protein level both in vivo and in vitro. The potent antagonist 3-(3pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) was used to block PFKFB3 activity in vivo (50 mg/kg, i.p.) and in vitro (10 µM). Echocardiographic analysis and TUNEL staining showed that 3PO significantly alleviated LPS-induced cardiac dysfunction and apoptotic injury in vivo. 3PO also suppressed the LPS-induced secretion of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6 and lactate in the serum, in addition to lactate in the myocardium. PFKFB3 inhibition also diminished the nuclear translocation and phosphorylation of transcription factor nuclear factor-κB (NF-κB) in both adult cardiomyocytes and HL-1 cells. Furthermore, immunoblotting analysis showed that 3PO inhibited LPS-induced apoptotic induction in cardiomyocytes. Taken together, these findings demonstrate that PFKFB3 participates in LPS-induced cardiac dysfunction via mediating inflammatory and apoptotic signaling pathway.

2.
Huan Jing Ke Xue ; 36(5): 1700-6, 2015 May.
Artigo em Chinês | MEDLINE | ID: mdl-26314119

RESUMO

Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.


Assuntos
Levofloxacino/química , Fotólise , Titânio/química , Adsorção , Cinética , Levofloxacino/efeitos da radiação , Luz
3.
J Asian Nat Prod Res ; 7(2): 121-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15621613

RESUMO

A convenient method for the stereoselective syntheses of beta-amino acids with alpha-substitutions has been developed. This synthetic route involves the preparation of isoxazolidinones through hydroxylamine addition to unsaturated esters and subsequent hydrogenation. This procedure is also useful for the stereoselective syntheses of alpha-deuterated beta-amino acids.


Assuntos
Aminoácidos/síntese química , Aminoácidos/química , Ésteres/química , Hidrogenação , Hidroxilamina/química , Espectroscopia de Ressonância Magnética , Oxazolidinonas/síntese química , Oxazolidinonas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA