Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
2.
Front Chem ; 10: 905781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572121

RESUMO

The adoption of plant-derived natural products to synthesize metal nanoparticles and their complexes has the advantages of mild reaction conditions, environmental protection, sustainability and simple operation compared with traditional physical or chemical synthesis methods. Herein, silver nanoparticles (AgNPs) were in situ synthesized on the surface of graphene oxide (GO) by a "one-pot reaction" to prepare graphene oxide-silver nanoparticles composite (GO-AgNPs) based on using AgNO3 as the precursor of AgNPs and gallic acid (GA) as the reducing agent and stabilizer. The size and morphology of GO-AgNPs were characterized by ultraviolet-visible spectrophotometer (Uv-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), X-ray diffractometer (XRD) and dynamic light scattering (DLS). The effects of pH, temperature, time and material ratio on the synthesis of GO-AgNPs were investigated experimentally. The results showed that ideal GO-AgNPs could be prepared under the conditions of pH = 9, 45°C, 2 h and the 2:1 of molar ratio of AgNO3 to GA. The AgNPs within GO-AgNPs are highly crystalline spherical particles with moderate density on the surface of GO, and the size of AgNPs is relatively uniform and determined to be about 8.19 ± 4.21 nm. The research results will provide new ideas and references for the green synthesis of metal nanoparticles and their complexes using plant-derived natural products as the reducing agent and stabilizer.

3.
Front Plant Sci ; 13: 890568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574085

RESUMO

Since the development of indica hybrid rice in the 1970s, great success has been achieved in hybrid rice production in China and around the world. The utilization of inter-subspecific indica-japonica hybrid rice has always been considered due to its stronger heterosis characteristics. However, indica-japonica hybrids face a serious problem of sterility, which hinders the exploitation of their heterosis. In the past decades, the genetic basis of indica-japonica hybrid sterility has been well studied. It was found that in sterile indica-japonica hybrids, female sterility was mainly controlled by the S5 locus and male sterility by the Sa, Sb, Sc, Sd, and Se loci. In this study, we developed wide-compatible indica lines (WCILs) by pyramiding multiple neutral (n) alleles of the hybrid sterility loci. First, we identified Sn alleles of the loci in single-segment substitution lines (SSSLs) in the genetic background of indica Huajingxian 74 (HJX74). Then, the Sn alleles of S5, Sb, Sc, Sd, and Se loci in SSSLs were pyramided in the HJX74 genetic background. The WCILs carrying Sn alleles at the S5, Sb, Sc, Sd, and Se loci showed wide compatibility with indica and japonica rice varieties. Therefore, the WCILs will be used to develop inter-subspecific indica-japonica hybrid rice with normal fertility.

4.
Environ Earth Sci ; 81(8): 243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432620

RESUMO

Deformation failure of roadways in fractured rock can lead to large-volume collapse and other engineering accidents. Failure mechanisms in fractured rock are complex and poorly understood, so to explore this issue, we simulated fractured rock masses using physical model tests in combination with numerical computations. A set of experimental techniques for roadway excavation under jointed surrounding rock included a mixed pouring-bricking method and a roadway excavation device, which can reproduce the structural characteristics of the prototype and replicate the excavation conditions of the roadway. Stress distribution characteristics of the roadway, from loading to excavation, were obtained based on strain monitoring and image acquisition, and the process of roadway deformation and failure was described in detail. A series of numerical simulations were conducted to investigate the deformation failure mechanisms of roadways under different excavation conditions. Results indicate that the deformation failure modes of roadways including collapse, rock burst, and floor heaving that were similar regardless of depth. Deformation failure modes of the roadway were determined by rock mass structure, and the deformation intensity was determined by geo-stress. Model testing and numerical simulation were consistent; hence, findings provide a theoretical basis and technical guidance for roadway engineering in fractured rock masses.

5.
Foods ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454740

RESUMO

An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic adsorbents. The immuno-separation of fluorescent reporters by magnetic adsorbents could be completed by ochratoxin A, so the fluorescent reporters released from the immune complex indicate a linear correlation with the concentration of ochratoxin A. Furthermore, the immuno-separated ochratoxin A can be eluted from magnetic adsorbent for LC-conformation. The optimized assay showed results as follows: the quantitative range of the immuno-separated assay was 0.03-100 ng mL-1 of ochratoxin A. The recoveries for spiked samples ranged from 78.2% to 91.4%, with the relative standard deviation (RSD) being 11.9%~15.3%. Statistical analysis indicated no significant difference between the HPLC-FLD results based on commercial affinity column and by nano-affinity cleaning up.

6.
Nano Lett ; 22(7): 3104-3111, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377661

RESUMO

Inspired by Namib Desert beetle and leaf venation, a wettability-integrated system consisting of wettability-hybrid coatings and venation-like patterns was designed and successfully fabricated via a simple, low-cost, and eco-friendly route. The as-prepared surface can construct a 3D topography with a water layer and efficiently drain through the venation-like patterns. The combination of multiple mechanisms enhances the fog harvesting ability significantly. Meanwhile, the synergistic mechanisms of fog harvesting enhancement by a wettability-integrated surface were further studied and discussed.


Assuntos
Besouros , Água , Animais , Folhas de Planta , Molhabilidade
7.
IEEE Trans Cybern ; PP2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442898

RESUMO

Most existing convolutional neural-network-based super-resolution (SR) methods focus on designing effective neural blocks but rarely describe the image SR mechanism from the perspective of image evolution in the SR process. In this study, we explore a new research routine by abstracting the movement of pixels in the reconstruction process as the flow of fluid in the field of fluid dynamics (FD), where explicit motion laws of particles have been discovered. Specifically, a novel fluid micelle network is devised for image SR based on the theory of FD that follows the residual learning scheme but learns the residual structure by solving the finite difference equation in FD. The pixel motion equation in the SR process is derived from the Navier-Stokes (N-S) FD equation, establishing a guided branch that is aware of edge information. Thus, the second-order residual drives the network for feature extraction, and the guided branch corrects the direction of the pixel stream to supplement the details. Experiments on popular benchmarks and a real-world microscope chip image dataset demonstrate that the proposed method outperforms other modern methods in terms of both objective metrics and visual quality. The proposed method can also reconstruct clear geometric structures, offering the potential for real-world applications.

8.
Br J Ophthalmol ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443997

RESUMO

AIMS: To investigate the association between the myopic severity and retinal microvascular density, choroidal vascularity and retrobulbar blood flow in adult anisomyopes. METHODS: This study comprised 90 eyes of 45 myopic anisomyopes who were recruited for Colour Doppler imaging (CDI) and optical coherence tomography angiography (OCTA). The superficial vessel density (SVD), deep vessel density (DVD), choroidal thickness (ChT) and choroidal vascularity, including total choroidal area (TCA), luminal area (LA), stromal area (SA) and Choroidal Vascularity Index (CVI), were measured using OCTA. Moreover, the Pulsatile Index, peak systolic velocity (PSV) and end diastolic velocity (EDV) of posterior ciliary artery (PCA), central retinal artery (CRA) and ophthalmic artery (OA) were quantified by CDI, and all parameters were compared between two eyes and the correlations among parameters were analysed. RESULTS: The mean difference of spherical equivalent (SE) and axial lengths (AL) between eyes were -6.00±2.94 D and 2.48±1.31 mm, respectively. The SVD, DVD, ChT, TCA, LA, SA and CVI were significantly lower in more myopic eyes compared with the contralateral eyes. In more myopic eyes, CDI parameters of CRA and PSV and EDV of PCA were also significantly lower. After adjusting for age and sex, the binocular asymmetry in LA and ChT was independent risk factor affecting interocular difference in both AL and SE. CONCLUSION: Retinal microvascular density, choroidal vascularity and retrobulbar blood flow were simultaneously lower in adult myopic anisomyopes with more myopic eyes and disturbed choroid circulation was related to the severity of myopia. Further longitudinal study was helped to identify the effect of choroidal parameters for myopic progression.

9.
BMC Microbiol ; 22(1): 114, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473561

RESUMO

BACKGROUND: The increasing emergence of multidrug-resistant Gram-positive bacterial infections necessitates new antibacterial agents with novel mechanisms of action that can be used to treat these infections. Lomitapide has been approved by FDA for years in reducing levels of low-density lipoprotein (LDL) in cases of familial hypercholesterolemia, whereas the antibacterial effect of lomitapide remains elusive. In this study, the inhibitory activities of lomitapide against Gram-positive bacteria were the first time explored. Quantitative proteomics analysis was then applied to investigate the mechanisms of action of lomitapide. RESULTS: The minimum inhibitory concentration (MIC) values of lomitapide against Gram-positive bacteria including both methicillin sensitive and resistant Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, and Streptococcus agalactiae were range 12.5-50 µM. Moreover, lomitapide also inhibited anti-biofilm activity against clinical S. aureus isolates. A total of 106 proteins with > 1.5-fold changes in expression were identified upon 1/2 × MIC lomitapide exposure, including 83 up-regulated proteins and 23 down-regulated proteins. Based on bioinformatics analysis, the expression of cell wall damage response proteins including two-component system VraS/VraR, lipoteichoic acid (LPA) D-alanylnation related proteins D-alanyl carrier protein (dltC) and carrier protein ligase (dltA), methionine sulfoxide reductases (mrsA1 and mrsB) were up-regulated. Moreover, the expression of SaeS and multiple fibrinogen-binding proteins (SAOUHSC_01110, FnBPB, SAOUHSC_02802, SdrC, SdrD) which were involved in the bacterial adhesion and biofilm formation, was inhibited by lomitapide. Furthermore, VraS/VraR deletion mutant (ΔvraSR) showed an enhanced lomitapide sensitivity phenotype. CONCLUSION: Lomitapide displayed broad antimicrobial activities against Gram-positive bacteria. The antibacterial effect of lomitapide may be caused by cell wall destruction, while the anti-biofilm activity may be related to the inhibition of surface proteins.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Benzimidazóis , Proteínas de Transporte , Bactérias Gram-Positivas , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
10.
Ecotoxicol Environ Saf ; 236: 113484, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421826

RESUMO

Mercury (Hg) is a global environmental contaminant, and excessive mercury levels in water can adversely affect the growth of fish. Silver carp (Hypophthalmichthys molitrix) is one of the important freshwater aquaculture fish in China, and its natural resources have been critically declining. However, the effects of Hg2+ exposure on the growth hormone/insulin-like growth factor (GH/IGF) axis and its toxic mechanism are still unclear. In this study, we systematically evaluated the bioaccumulation, histomorphology, antioxidant status, hormone levels, and GH/IGF axis toxicity of juvenile silver carp after exposure to environmental-related concentrations of Hg2+ (0, 0.05, 0.5, 5, and 50 µg/L) for 28 days. Results showed that the Hg2+ bioaccumulation in the liver increased with a rise in Hg2+ concentration and time of exposure. The body length (BL), body weight (BW), weight growth rate (WGR) and specific growth rate (SGR) all decreased after Hg2+ exposure. The serum levels of growth hormones (GH and IGF) and thyroid hormones (T3 and T4) were significantly decreased, and the expressions of GH/IGF axis-related genes were significantly downregulated after 7, 14, and 28 days of Hg2+ exposure. Correlations between the growth parameters and growth hormones or expression of genes in GH/IGF axis further suggested that environmentally relevant concentrations of Hg2+ could have adverse effects on growth. In addition, with increasing Hg2+ exposure, superoxide activities of dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were significantly increased, whereas the activity of glutathione peroxidase (GPx) significantly decreased and oxidative stress-related gene significantly changed. Liver lesions were mainly characterized by inflammatory cell infiltration, hepatocyte necrosis and fat vacuolation after exposure to Hg2+. Taken together, the results indicate that Hg2+ exposure leads to growth inhibition and oxidative stress in juvenile silver.


Assuntos
Carpas , Mercúrio , Somatomedinas , Animais , Carpas/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Mercúrio/toxicidade , Estresse Oxidativo , Somatomedinas/metabolismo
11.
J Environ Sci (China) ; 114: 365-375, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459499

RESUMO

The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Oligoelementos , Poluentes Atmosféricos/análise , Fracionamento Químico , Carvão Mineral , Poeira , Monitoramento Ambiental/métodos , Metais/análise , Metais Pesados/análise , Material Particulado/análise , Oligoelementos/análise
12.
J Antibiot (Tokyo) ; 75(5): 287-295, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288676

RESUMO

Triclabendazole (TBD) has been widely used in the treatment of helminthic infection. The anti-biofilm activity and antibacterial mechanism of TBD against Staphylococcus aureus were not known. Here, the anti-biofilm activity of TBD against clinical S. aureus isolates from China was systematically evaluated. Under TBD pressure, TBD-induced tolerant S. aureus with elevated TBD minimum inhibitory concentration (MIC) was selected in vitro and the genetic mutations between the parental isolates and TBD-induced tolerant derivatives were determined by whole-genome sequencing. TBD could significantly inhibit biofilm formation at sub-inhibitory concentration and disperse mature biofilm of clinical S. aureus isolates. In addition, TBD displayed bactericidal activity against the bacterial cells embedded in the biofilm and showed anti-persisters activity. Proteomic analysis showed that KEGG pathways of ABC transporters and beta-lactam resistance were significantly changed after TBD exposure. Moreover, SAUSA300_RS08395 (molecular chaperone DnaK), SAUSA300_RS11200 (sensor histidine kinase KdpD), SAUSA300_RS06325 (DNA translocase FtsK) were identified as candidate targets of TBD in S. aureus. Overexpression experiments further demonstrated that the elevated transcriptional level of DnaK resulted in S. aureus growth delay after exposure to a sub-MIC concentration of 1/2× MIC TBD. In conclusion, TBD exhibits antibacterial and anti-biofilm activity against S. aureus possibly by targeting the DnaK chaperone system.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Proteômica , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Triclabendazol
13.
Microbiol Spectr ; 10(2): e0054121, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234502

RESUMO

Staphylococcus aureus poses a significant threat to human health due to its virulence and multidrug resistance. In addition, recalcitrant biofilm formation of S. aureus often results in chronic infection and the treatment tolerance toward the traditional antibiotics. Thus, the development of novel antimicrobial agents capable to inhibit or eradicate S. aureus biofilm formation does matter. Here, we demonstrated that clemastine showed slight bacteriostatic activity and enhanced the antibacterial activity of oxacillin against S. aureus. Moreover, the dramatic inhibition of biofilm formation was found in clinical S. aureus strains by clemastine. Clemastine inhibited the release of eDNA during the biofilm formation and decreased the S. aureus hemolytic activity. Moreover, the S. aureus SA113 treated with clemastine displayed the decreased transcriptional level of the biofilm formation relevant genes (fnbB, icaA, and icaB), virulence genes (hlg, hld, lukde, lukpvl, beta-PSM, delta-PSM, and cap5A), and the regulatory genes agrA. The proteomics analysis of SA113 treated with clemastine demonstrated the significant changes in levels of biofilm-related proteins (stress response regulators ClpB and GroS, ATP-binding proteins, and urease metabolism), virulence-related proteins (SspA, superantigen, and VWbp), and methicillin resistance-related proteins (glutamine metabolism). The genetic mutations on gdpP (cyclic di-AMP phosphodiesterase) were found in the clemastine-induced tolerant derivative isolate by whole-genome sequencing. Furthermore, the interaction between clemastine and GdpP protein was demonstrated by the molecular docking, gdpP overexpression experiment, and thermal stability assay. Conclusively, clemastine might exert its inhibitory effects against the biofilm formation and hemolysis in S. aureus through targeting GdpP protein. IMPORTANCE The biofilm formation, which protects bacteria from stresses, including antibiotics and host immune responses, can be commonly found in clinical S. aureus isolates worldwide. Treatment failure of traditional antibiotics in biofilm-associated S. aureus infections remains a serious challenge. The novel anti-biofilm drug is urgently needed to address the looming crisis. In this study, clemastine, which is a histamine receptor H1 (HRH1) antagonist, was found to have a novel role of the significant inhibition against the biofilm formation and hemolytic activity of S. aureus and enhanced antibacterial activity against S. aureus when used in combination with oxacillin by targeting the GdpP protein. The discovery of this study identified novel use and mechanism of action of clemastine as a potential anti-biofilm drug for clinical application for S. aureus infectious.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Clemastina/farmacologia , Clemastina/uso terapêutico , Hemólise , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxacilina/farmacologia , Oxacilina/uso terapêutico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 158-163, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300779

RESUMO

The fatty acid desaturase 2 (FADS2) gene encodes delta-6 desaturase (D6D) and is a member of the fatty acid desaturase gene family.D6D is the key enzyme catalyzing the transformation of linoleic acid and α-linolenic acid to long-chain polyunsaturated fatty acid (LC-PUFA).LC-PUFA play a crucial role in regulating the glycolipid metabolism of living organisms.In recent years,the activity of D6D and the single nucleotide polymorphism (SNP) of FADS2 gene have become a hot topic in the research on glycolipid metabolism.This article reviews the role of FADS2 gene in glycolipid metabolism.


Assuntos
Ácidos Graxos Dessaturases , Glicolipídeos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Glicolipídeos/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único
15.
Nat Commun ; 13(1): 1515, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314706

RESUMO

Hadal trenches are the deepest and most remote regions of the ocean. The 11-kilometer deep Challenger Deep is the least explored due to the technical challenges of sampling hadal depths. It receives organic matter and heavy metals from the overlying water column that accumulate differently across its V-shaped topography. Here, we collected sediments across the slope and bottom-axis of the Challenger Deep that enable insights into its in situ microbial communities. Analyses of 586 metagenome-assembled genomes retrieved from 37 metagenomes show distinct diversity and metabolic capacities between bottom-axis and slope sites. 26% of prokaryotic 16S rDNA reads in metagenomes were novel, with novelty increasing with water and sediment depths. These predominantly heterotrophic microbes can recycle macromolecules and utilize simple and complex hydrocarbons as carbon sources. Metagenome and metatranscriptome data support reduction and biotransformation of arsenate for energy gain in sediments that present a two-fold greater accumulation of arsenic compared to non-hadal sites. Complete pathways for anaerobic ammonia oxidation are predominantly identified in genomes recovered from bottom-axis sediments compared to slope sites. Our results expand knowledge of microbially-mediated elemental cycling in hadal sediments, and reveal differences in distribution of processes involved in nitrogen loss across the trench.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Sedimentos Geológicos , Processos Heterotróficos , Metagenoma/genética , Microbiota/genética , Água/metabolismo
16.
Mol Neurobiol ; 59(5): 3254-3279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297012

RESUMO

Single-factor intervention, such as physical exercise and auditory and visual stimulation, plays a positive role on the prevention and treatment of Alzheimer's disease (AD); however, the therapeutic effects of single-factor intervention are limited. The beneficial effects of these multifactor combinations on AD and its molecular mechanism have yet to be elucidated. Here, we investigated the effect of multifactor intervention, voluntary wheel exercise, and involuntary treadmill running in combination with acousto-optic stimulation, on adult neurogenesis and behavioral phenotypes in a mouse model of AD. We found that 4 weeks of multifactor intervention can significantly increase the production of newborn cells (BrdU+ cells) and immature neurons (DCX+ cells) in the hippocampus and lateral ventricle of Aß oligomer-induced mice. Importantly, the multifactor intervention could promote BrdU+ cells to differentiate into neurons (BrdU+ DCX+ cells or BrdU+ NeuN+ cells) and astrocytes (BrdU+GFAP+ cells) in the hippocampus and ameliorate Aß oligomer-induced cognitive impairment and anxiety- and depression-like behaviors in mice evaluated by novel object recognition, Morris water maze tests, elevated zero maze, forced swimming test, and tail suspension test, respectively. Moreover, multifactor intervention could lead to an increase in the protein levels of PSD-95, SYP, DCX, NeuN, GFAP, Bcl-2, BDNF, TrkB, and pSer473-Akt and a decrease in the protein levels of BAX and caspase-9 in the hippocampal lysates of Aß oligomer-induced mice. Furthermore, sequencing analysis of serum metabolites revealed that aberrantly expressed metabolites modulated by multifactor intervention were highly enriched in the biological process associated with keeping neurons functioning and neurobehavioral function. Additionally, the intervention-mediated serum metabolites mainly participated in glutamate metabolism, glucose metabolism, and the tricarboxylic acid cycle in mice. Our findings suggest the potential of multifactor intervention as a non-invasive therapeutic strategy for AD to anti-Aß oligomer neurotoxicity.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Neurogênese/fisiologia , Natação
17.
Acupunct Med ; : 9645284221076517, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229627

RESUMO

OBJECTIVE: We aimed to evaluate the effectiveness and safety of preoperative electroacupuncture (EA) on the incidence of postoperative nausea and vomiting (PONV), and severity of postoperative pain, in gynecological patients undergoing laparoscopic surgery. The effects of EA administered at different preoperative time points were compared. METHODS: A total of 413 patients undergoing elective laparoscopic gynecological surgery were randomly allocated into 4 groups receiving EA the day before surgery (Group Pre, n = 103), 30 min before (Group 30, n = 104) or both (Group Comb, n = 103), or usual care alone (Group Usual, n = 103). All acupuncture groups had usual care. The incidence of PONV and pain at 24 h were primary outcomes. Secondary outcomes included the severity of postoperative nausea, vomiting and pain, requirement for antiemetic medication and quality of recovery (QoR)-15 scores after surgery. RESULTS: There were significant differences between the four groups in nausea and vomiting incidence (0-24 h), postoperative antiemetic use (0-48 h), and postoperative pain (0-6 h), with the EA groups recording the lowest levels. Regarding primary outcomes, incidence of nausea and vomiting at 6-24 h was 28/11/18/11% (p = 0.003) 23/5/8/9% (p < 0.001), respectively, for Groups Usual/Pre/30/Comb. Accordingly, EA reduced the incidence of nausea and vomiting at 6-24 h by 61/34/60% and 79/65/61% for Groups Pre/30/Comb, respectively. Regarding secondary outcomes, incidence of nausea and vomiting at 0-6 h was 20/9/11/7% (p = 0.013) and 17/7/9/6% (p = 0.021), respectively, for Groups Usual/Pre/30/Comb. Rescue antiemetics at 0-6 h were required by 18/4/11/4% (p = 0.001) in Groups Usual/Pre/30/Comb. The mean numerical rating scale (NRS) pain score (0-10) at 0-6 h was significantly different between groups (2.45/1.89/2.01/1.97 for Groups Usual/Pre/30/Comb, p = 0.024). There were no significant differences between the three EA-treated groups. CONCLUSION: In gynecological patients undergoing laparoscopic surgery and treated with multimodal antiemetic methods, one session of preoperative EA may be a safe adjunctive treatment for PONV prophylaxis. Optimal timing of EA requires further verification. TRIAL REGISTRATION NUMBER: ChiCTR-INR-16010035 (Chinese Clinical Trial Registry).

18.
Aging (Albany NY) ; 14(6): 2462-2474, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294400

RESUMO

Social isolation has been recommended as a strategy for reducing COVID-19 risk, but it may have unintended consequences for mental well-being. We explored the relationship between social isolation and symptoms of depression and anxiety in older adults during the first wave of the COVID-19 pandemic and assessed the role of cardiometabolic diseases (CMDs) in this association. Between May and September 2020, 1,190 older adults from the Swedish National Study on Aging and Care in Kungsholmen were surveyed about their behaviors and health consequences during the first wave of the COVID-19 pandemic. In total, 913 (76.7%) participants reported socially isolating at home to avoid infection during this period. Social isolation was associated with a greater likelihood of reduced mental well-being (i.e., feelings of depression or anxiety) (OR: 1.74, 95% CI: 1.15-2.65). In joint exposure analysis, there was a significant likelihood of reduced mental well-being only among people who were socially isolating and had CMDs (OR: 2.13, 95% CI: 1.22-3.71) (reference: not isolating, CMD-free). In conclusion, social isolation as a COVID-19 prevention strategy was related to reduced mental well-being in an urban sample of Swedish older adults, especially among individuals with CMDs.


Assuntos
COVID-19 , Doenças Cardiovasculares , Idoso , Ansiedade/epidemiologia , COVID-19/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Isolamento Social , Suécia/epidemiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-35239961

RESUMO

BACKGROUND: Diabetes has been related to disability and excess mortality. We estimated the extent to which diabetes shortens disability-free survival and identified modifiable factors that may prolong disability-free survival in older adults with diabetes. METHODS: Disability-free older adults (n=2,216, mean age: 71 years, female: 61%) were followed for up to 15 years. Diabetes was ascertained through medical examinations, medication use, or glycated hemoglobin ≥ 6.5% 48 mmol/mol. Disability-free survival was defined as survival until the occurrence of disability. A favourable (vs. unfavourable) lifestyle profile was defined as the presence of at least one of the following: healthy (vs. unhealthy) behaviours, active (vs. inactive) engagement in leisure activities, or moderate-to-rich (vs. poor) social network. Data were analysed using Cox regression and Laplace regression. RESULTS: During the follow-up, 1,345 (60.7%) participants developed disability or died. Diabetes, but not prediabetes, was related to the outcome (hazard ratio [HR] 1.29, 95% CI 1.06-1.57), and 2.15 (1.02-3.27) years shorter median disability-free survival. In joint exposure analysis, disability-free survival was shortened by 3.29 (1.21-5.36), 3.92 (2.08-5.76), and 1.66 (0.06-3.28) years for participants with diabetes plus unhealthy behaviours, inactive engagement in leisure activities, or poor social network. Among participants with diabetes, a favourable profile led to a non-significant HR of 1.19 (0.93-1.56) for disability/death and prolonged disability-free survival by 3.26 (2.33-4.18) years compared to those with unfavourable profile. CONCLUSIONS: A healthy and socially active lifestyle may attenuate the risk of diabetes on disability or death and prolong disability-free survival among people with diabetes.

20.
Oral Dis ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298860

RESUMO

OBJECTIVE: Periostin is important for the maintenance of periodontal tissue, but its role in periodontitis is controversial. This research investigated the effect of periostin in periodontitis and the underlying mechanism. DESIGN: Mouse periodontitis models in vivo and inflammation model in vitro which were induced by Porphyromonas gingivalis lipopolysaccharide were established to evaluate periostin expression. Human periodontal ligament fibroblasts (PDLFs) were treated with lipopolysaccharide and N-acetylcysteine, fluorescence staining, flow cytometry, Western blot, and qRT-PCR were used to detect reactive oxygen species (ROS), periostin expression, and apoptosis-related makers. The periostin gene was successfully transfected into PDLFs to verify the effect of periostin on apoptosis. Then, the Nrf2 inhibitor was added to clarify the mechanism. RESULTS: Periostin expression decreased in the periodontal ligaments of mouse periodontitis models and lipopolysaccharide-induced PDLFs. Lipopolysaccharide promoted the activation of ROS and apoptosis in PDLFs, whereas N-acetylcysteine reversed this condition. Overexpression of periostin suppressed apoptosis of PDLFs and reversed the inhibitory effect of lipopolysaccharide on nuclear Nrf2 expression. Moreover, the Nrf2 inhibitor attenuated the protective effect of periostin on lipopolysaccharide-induced apoptosis. CONCLUSIONS: Lipopolysaccharide induced apoptosis in PDLFs by inhibiting periostin expression and thus Nrf2/HO-1 pathway, indicating that periostin could be a potential therapeutic target for periodontitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...