Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 71(2): 463-476, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31278760

RESUMO

Nucleos(t)ide analogues (NAs) have been widely used for the treatment of chronic hepatitis B (CHB). Because viral DNA polymerase lacks proofreading function (3' exonuclease activity), theoretically, the incorporated NAs would irreversibly terminate viral DNA synthesis. This study explored the natures of nascent hepatitis B virus (HBV) DNA and infectivity of progeny virions produced under NA treatment. HBV infectivity was determined by infection of HepG2-NTCP cells and primary human hepatocytes (PHHs). Biochemical properties of HBV DNA in the progeny virions were investigated by qPCR, northern blotting, or Southern blotting hybridization, sucrose gradient centrifugation, and in vitro endogenous DNA polymerase assay. Progeny HBV virions produced under NA treatment were mainly not infectious to HepG2-NTCP cells or PHHs. Biochemical analysis revealed that under NA treatment, HBV DNA in nucleaocapsids or virions were predominantly short minus-strand DNA with irreversible termination. This finding was supported by the observation of first disappearance of relaxed circular DNA and then the proportional decline of HBV-DNA levels corresponding to the regions of PreC/C, S, and X genes in serial sera of patients receiving NA treatment. Conclusion: HBV virions produced under NA treatment are predominantly replication deficient because the viral genomes are truncated and elongation of DNA chains is irreversibly terminated. Clinically, our results suggest that the viral loads of CHB patients under NA therapy vary with the different regions of genome being detected by qPCR assays. Our findings also imply that NA prevention of perinatal and sexual HBV transmission as well as infection of transplanted livers works not only by reducing viral loads, but also by producing noninfectious virions.

3.
Emerg Microbes Infect ; 8(1): 1511-1523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31631785

RESUMO

Interferons (IFNs) control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. We report herein that gamma-interferon-inducible lysosomal thiol reductase (GILT), a lysosome-associated ISG, restricts the infectious entry of selected enveloped RNA viruses. Specifically, we demonstrated that GILT was constitutively expressed in lung epithelial cells and fibroblasts and its expression could be further induced by type II interferon. While overexpression of GILT inhibited the entry mediated by envelope glycoproteins of SARS coronavirus (SARS-CoV), Ebola virus (EBOV) and Lassa fever virus (LASV), depletion of GILT enhanced the entry mediated by these viral envelope glycoproteins. Furthermore, mutations that impaired the thiol reductase activity or disrupted the N-linked glycosylation, a posttranslational modification essential for its lysosomal localization, largely compromised GILT restriction of viral entry. We also found that the induction of GILT expression reduced the level and activity of cathepsin L, which is required for the entry of these RNA viruses in lysosomes. Our data indicate that GILT is a novel antiviral ISG that specifically inhibits the entry of selected enveloped RNA viruses in lysosomes via disruption of cathepsin L metabolism and function and may play a role in immune control and pathogenesis of these viruses.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/imunologia , Febre Lassa/imunologia , Vírus Lassa/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , Vírus da SARS/fisiologia , Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Catepsina L/genética , Catepsina L/imunologia , Linhagem Celular , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Febre Lassa/genética , Febre Lassa/virologia , Vírus Lassa/genética , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/virologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Vírus da SARS/genética , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral/genética , Replicação Viral
4.
ACS Infect Dis ; 5(7): 1139-1149, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31060350

RESUMO

Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.

5.
PLoS Pathog ; 15(4): e1007742, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31026293

RESUMO

Persistent hepatitis B virus (HBV) infection relies on the establishment and maintenance of covalently closed circular (ccc) DNA, a 3.2 kb episome that serves as a viral transcription template, in the nucleus of an infected hepatocyte. Although evidence suggests that cccDNA is the repair product of nucleocapsid associated relaxed circular (rc) DNA, the cellular DNA polymerases involving in repairing the discontinuity in both strands of rcDNA as well as the underlying mechanism remain to be fully understood. Taking a chemical genetics approach, we found that DNA polymerase alpha (Pol α) is essential for cccDNA intracellular amplification, a genome recycling pathway that maintains a stable cccDNA pool in infected hepatocytes. Specifically, inhibition of Pol α by small molecule inhibitors aphidicolin or CD437 as well as silencing of Pol α expression by siRNA led to suppression of cccDNA amplification in human hepatoma cells. CRISPR-Cas9 knock-in of a CD437-resistant mutation into Pol α genes completely abolished the effect of CD437 on cccDNA formation, indicating that CD437 directly targets Pol α to disrupt cccDNA biosynthesis. Mechanistically, Pol α is recruited to HBV rcDNA and required for the generation of minus strand covalently closed circular rcDNA, suggesting that Pol α is involved in the repair of the minus strand DNA nick in cccDNA synthesis. Our study thus reveals that the distinct host DNA polymerases are hijacked by HBV to support the biosynthesis of cccDNA from intracellular amplification pathway compared to that from de novo viral infection, which requires Pol κ and Pol λ.


Assuntos
DNA Polimerase I/metabolismo , DNA Circular/genética , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Replicação Viral/genética , DNA Circular/metabolismo , DNA Viral/metabolismo , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Vírion
6.
J Virol ; 93(11)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867306

RESUMO

In order to identify host cellular DNA metabolic enzymes that are involved in the biosynthesis of hepatitis B virus (HBV) covalently closed circular (ccc) DNA, we developed a cell-based assay supporting synchronized and rapid cccDNA synthesis from intracellular progeny nucleocapsid DNA. This was achieved by arresting HBV DNA replication in HepAD38 cells with phosphonoformic acid (PFA), a reversible HBV DNA polymerase inhibitor, at the stage of single-stranded DNA and was followed by removal of PFA to allow the synchronized synthesis of relaxed circular DNA (rcDNA) and subsequent conversion into cccDNA within 12 to 24 h. This cccDNA formation assay allows systematic screening of the effects of small molecular inhibitors of DNA metabolic enzymes on cccDNA synthesis but avoids cytotoxic effects upon long-term treatment. Using this assay, we found that all the tested topoisomerase I and II (TOP1 and TOP2, respectively) poisons as well as topoisomerase II DNA binding and ATPase inhibitors significantly reduced the levels of cccDNA. It was further demonstrated that these inhibitors also disrupted cccDNA synthesis during de novo HBV infection of HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). Mechanistic analyses indicate that whereas TOP1 inhibitor treatment prevented the production of covalently closed negative-strand rcDNA, TOP2 inhibitors reduced the production of this cccDNA synthesis intermediate to a lesser extent. Moreover, small interfering RNA (siRNA) knockdown of topoisomerase II significantly reduced cccDNA amplification. Taking these observations together, our study demonstrates that topoisomerase I and II may catalyze distinct steps of HBV cccDNA synthesis and that pharmacologic targeting of these cellular enzymes may facilitate the cure of chronic hepatitis B.IMPORTANCE Persistent HBV infection relies on stable maintenance and proper functioning of a nuclear episomal form of the viral genome called cccDNA, the most stable HBV replication intermediate. One of the major reasons for the failure of currently available antiviral therapeutics to cure chronic HBV infection is their inability to eradicate or inactivate cccDNA. We report here a chemical genetics approach to identify host cellular factors essential for the biosynthesis and maintenance of cccDNA and reveal that cellular DNA topoisomerases are required for both de novo synthesis and intracellular amplification of cccDNA. This approach is suitable for systematic screening of compounds targeting cellular DNA metabolic enzymes and chromatin remodelers for their ability to disrupt cccDNA biosynthesis and function. Identification of key host factors required for cccDNA metabolism and function will reveal molecular targets for developing curative therapeutics of chronic HBV infection.

7.
ACS Infect Dis ; 5(5): 659-674, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29893548

RESUMO

Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.

8.
ACS Infect Dis ; 5(5): 759-768, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30525438

RESUMO

Hepatitis B virus (HBV) core protein is a small protein with 183 amino acid residues and assembles the pregenomic (pg) RNA and viral DNA polymerase to form nucleocapsids. During the last decades, several groups have reported HBV core protein allosteric modulators (CpAMs) with distinct chemical structures. CpAMs bind to the hydrophobic HAP pocket located at the dimer-dimer interface and induce allosteric conformational changes in the core protein subunits. While Type I CpAMs, heteroaryldihydropyrimidine (HAP) derivatives, misdirect core protein dimers to assemble noncapsid polymers, Type II CpAMs, represented by sulfamoylbenzamides, phenylpropenamides, and several other chemotypes, induce the assembly of empty capsids with global structural alterations and faster mobility in native agarose gel electrophoresis. Through high throughput screening of an Asinex small molecule library containing 19 920 compounds, we identified 8 structurally distinct CpAMs. While 7 of those compounds are typical Type II CpAMs, a novel benzamide derivative, designated as BA-53038B, induced the formation of morphologically "normal" empty capsids with slow electrophoresis mobility. Drug resistant profile analyses indicated that BA-53038B most likely bound to the HAP pocket but obviously modulated HBV capsid assembly in a distinct manner. BA-53038B and other CpAMs reported herein provide novel structure scaffolds for the development of core protein-targeted antiviral agents for the treatment of chronic hepatitis B.

9.
Virol Sin ; 33(6): 538-544, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30421112

RESUMO

2',3'-dideoxyguanosine (DoG) has been demonstrated to inhibit duck hepatitis B virus (DHBV) replication in vivo in a duck model of HBV infection. In the current study, the in vitro antiviral effects of DoG on human and animal hepadnaviruses were investigated. Our results showed that DoG effectively inhibited HBV, DHBV, and woodchuck hepatitis virus (WHV) replication in hepatocyte-derived cells in a dose-dependent manner, with 50% effective concentrations (EC50) of 0.3 ± 0.05, 6.82 ± 0.25, and 23.0 ± 1.5 µmol/L, respectively. Similar to other hepadnaviral DNA polymerase inhibitors, DoG did not alter the levels of intracellular viral RNA but induced the accumulation of a less-than-full-length viral RNA species, which was recently demonstrated to be generated by RNase H cleavage of pgRNA. Furthermore, using a transient transfection assay, DoG showed similar antiviral activity against HBV wild-type, 3TC-resistant rtA181V, and adefovir-resistant rtN236T mutants. Our results suggest that DoG has potential as a nucleoside analogue drug with anti-HBV activity.


Assuntos
Antivirais/farmacologia , Didesoxinucleosídeos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Vírus da Hepatite B do Pato/efeitos dos fármacos , Vírus da Hepatite B da Marmota/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleosídeos/farmacologia , RNA Viral/efeitos dos fármacos
10.
Antiviral Res ; 159: 1-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201396

RESUMO

Native agarose gel electrophoresis-based particle gel assay has been commonly used for examination of hepatitis B virus (HBV) capsid assembly and pregenomic RNA encapsidation in HBV replicating cells. Interestingly, treatment of cells with several chemotypes of HBV core protein allosteric modulators (CpAMs) induced the assembly of both empty and DNA-containing capsids with faster electrophoresis mobility. In an effort to determine the physical basis of CpAM-induced capsid mobility shift, we found that the surface charge, but not the size, of capsids is the primary determinant of electrophoresis mobility. Specifically, through alanine scanning mutagenesis analysis of twenty-seven charged amino acids in core protein assembly domain and hinge region, we showed that except for K7 and E8, substitution of glutamine acid (E) or aspartic acid (D) on the surface of capsids reduced their mobility, but substitution of lysine (K) or arginine (R) on the surface of capsids increased their mobility in variable degrees. However, alanine substitution of the charged amino acids that are not exposed on the surface of capsid did not apparently alter capsid mobility. Hence, CpAM-induced electrophoresis mobility shift of capsids may reflect the global alteration of capsid structure that changes the exposure and/or ionization of charged amino acid side chains of core protein. Our findings imply that CpAM inhibition of pgRNA encapsidation is possibly due to the assembly of structurally altered nucleocapsids. Practically, capsid electrophoresis mobility shift is a diagnostic marker of compounds that target core protein assembly and predicts sensitivity of HBV strains to specific CpAMs.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/fisiologia , RNA/metabolismo , Proteínas do Core Viral/genética , Montagem de Vírus , Regulação Alostérica , Proteínas do Capsídeo/metabolismo , Eletroforese , Ensaio de Desvio de Mobilidade Eletroforética , Células Hep G2 , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , RNA Viral/metabolismo , Replicação Viral
11.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669831

RESUMO

Hepatitis B virus (HBV) core protein consists of an N-terminal assembly domain and a C-terminal domain (CTD) with seven conserved serines or threonines that are dynamically phosphorylated/dephosphorylated during the viral replication cycle. Sulfamoylbenzamide derivatives are small molecular core protein allosteric modulators (CpAMs) that bind to the heteroaryldihydropyrimidine (HAP) pocket between the core protein dimer-dimer interfaces. CpAM binding alters the kinetics and pathway of capsid assembly and can result in the formation of morphologically "normal" capsids devoid of viral pregenomic RNA (pgRNA) and DNA polymerase. In order to investigate the mechanism underlying CpAM inhibition of pgRNA encapsidation, we developed an immunoblotting assay that can resolve core protein based on its phosphorylation status and demonstrated, for the first time, that core protein is hyperphosphorylated in free dimers and empty capsids from both mock-treated and CpAM-treated cells but is hypophosphorylated in pgRNA- and DNA-containing nucleocapsids. Interestingly, inhibition of pgRNA encapsidation by a heat shock protein 90 (HSP90) inhibitor prevented core protein dephosphorylation. Moreover, core proteins with point mutations at the wall of the HAP pocket, V124A and V124W, assembled empty capsids and nucleocapsids with altered phosphorylation status. The results thus suggest that core protein dephosphorylation occurs in the assembly of pgRNA and that interference with the interaction between core protein subunits at dimer-dimer interfaces during nucleocapsid assembly alters not only capsid structure, but also core protein dephosphorylation. Hence, inhibition of pgRNA encapsidation by CpAMs might be due to disruption of core protein dephosphorylation during nucleocapsid assembly.IMPORTANCE Dynamic phosphorylation of HBV core protein regulates multiple steps of viral replication. However, the regulatory function was mainly investigated by phosphomimetic mutagenesis, which disrupts the natural dynamics of core protein phosphorylation/dephosphorylation. Development of an immunoblotting assay capable of resolving hyper- and hypophosphorylated core proteins allowed us to track the phosphorylation status of core proteins existing as free dimers and the variety of intracellular capsids and to investigate the role of core protein phosphorylation/dephosphorylation in viral replication. Here, we found that disruption of core protein interaction at dimer-dimer interfaces during nucleocapsid assembly (by CpAMs or mutagenesis) inhibited core protein dephosphorylation and pgRNA packaging. Our work has thus revealed a novel function of core protein dephosphorylation in HBV replication and the mechanism by which CpAMs, a class of compounds that are currently in clinical trials for treatment of chronic hepatitis B, induce the assembly of empty capsids.


Assuntos
Genoma Viral , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Precursores de RNA/metabolismo , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Regulação Alostérica , Capsídeo/metabolismo , Células Cultivadas , Hepatite B/genética , Hepatite B/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fosforilação , Precursores de RNA/genética , RNA Viral/genética , Proteínas do Core Viral/genética , Replicação Viral
12.
Artigo em Inglês | MEDLINE | ID: mdl-29555628

RESUMO

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Montagem de Vírus/efeitos dos fármacos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , DNA Circular/metabolismo , DNA Viral/sangue , DNA Viral/metabolismo , Feminino , Guanina/análogos & derivados , Guanina/farmacologia , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Viral/genética
15.
Front Microbiol ; 9: 3228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687247

RESUMO

Interferon-induced transmembrane proteins (IFITMs) are a family of small proteins that localize in the plasma and endolysosomal membranes. IFITMs not only inhibit viral entry into host cells by interrupting the membrane fusion between viral envelope and cellular membranes, but also reduce the production of infectious virions or infectivity of progeny virions. Not surprisingly, some viruses can evade the restriction of IFITMs and even hijack the antiviral proteins to facilitate their infectious entry into host cells or promote the assembly of virions, presumably by modulating membrane fusion. Similar to many other host defense genes that evolve under the selective pressure of microorganism infection, IFITM genes evolved in an accelerated speed in vertebrates and many single-nucleotide polymorphisms (SNPs) have been identified in the human population, some of which have been associated with severity and prognosis of viral infection (e.g., influenza A virus). Here, we review the function and potential impact of genetic variation for IFITM restriction of viral infections. Continuing research efforts are required to decipher the molecular mechanism underlying the complicated interaction among IFITMs and viruses in an effort to determine their pathobiological roles in the context of viral infections in vivo.

16.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263263

RESUMO

Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. We found that three distinct mutations in IFITM1 or IFITM3 converted the host restriction factors to enhance entry driven by the spike proteins of severe acute respiratory syndrome coronavirus (SARS-CoV) and/or Middle East respiratory syndrome coronavirus (MERS-CoV). First, replacement of IFITM3 tyrosine 20 with either alanine or aspartic acid to mimic unphosphorylated or phosphorylated IFITM3 reduced its activity to inhibit the entry of HCoV-NL63 and -229E but enhanced the entry of SARS-CoV and MERS-CoV. Second, replacement of IFITM3 tyrosine 99 with either alanine or aspartic acid reduced its activity to inhibit the entry of HCoV-NL63 and SARS-CoV but promoted the entry of MERS-CoV. Third, deletion of the carboxyl-terminal 12 amino acid residues from IFITM1 enhanced the entry of MERS-CoV and HCoV-OC43. These findings suggest that these residues and structural motifs of IFITM proteins are key determinants for modulating the entry of HCoVs, most likely through interaction with viral and/or host cellular components at the site of viral entry to modulate the fusion of viral envelope and cellular membranes.IMPORTANCE The differential effects of IFITM proteins on the entry of HCoVs that utilize divergent entry pathways and membrane fusion mechanisms even when using the same receptor make the HCoVs a valuable system for comparative investigation of the molecular mechanisms underlying IFITM restriction or promotion of virus entry into host cells. Identification of three distinct mutations that converted IFITM1 or IFITM3 from inhibitors to enhancers of MERS-CoV or SARS-CoV spike protein-mediated entry revealed key structural motifs or residues determining the biological activities of IFITM proteins. These findings have thus paved the way for further identification of viral and host factors that interact with those structural motifs of IFITM proteins to differentially modulate the infectious entry of HCoVs.


Assuntos
Antígenos de Diferenciação/metabolismo , Coronavirus/metabolismo , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Substituição de Aminoácidos , Antígenos de Diferenciação/genética , Linhagem Celular Tumoral , Coronavirus/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Antiviral Res ; 150: 112-122, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29253498

RESUMO

Targeting host functions essential for viral replication has been considered as a broad spectrum and resistance-refractory antiviral approach. However, only a few host functions have, thus far, been validated as broad-spectrum antiviral targets in vivo. ER α-glucosidases I and II have been demonstrated to be essential for the morphogenesis of many enveloped viruses, including members from four families of viruses causing hemorrhagic fever. In vivo antiviral efficacy of various iminosugar-based ER α-glucosidase inhibitors has been reported in animals infected with Dengue, Japanese encephalitis, Ebola, Marburg and influenza viruses. Herein, we established Huh7.5-derived cell lines with ER α-glucosidase I or II knockout using CRISPR/Cas9 and demonstrated that the replication of Dengue, Yellow fever and Zika viruses was reduced by only 1-2 logs in the knockout cell lines. The results clearly indicate that only a partial suppression of viral replication can possibly be achieved with a complete inhibition of ER-α-glucosidases I or II by their inhibitors. We therefore explore to improve the antiviral efficacy of a lead iminosugar IHVR-19029 through combination with another broad-spectrum antiviral agent, favipiravir (T-705). Indeed, combination of IHVR-19029 and T-705 synergistically inhibited the replication of Yellow fever and Ebola viruses in cultured cells. Moreover, in a mouse model of Ebola virus infection, combination of sub-optimal doses of IHVR-19029 and T-705 significantly increased the survival rate of infected animals. We have thus proved the concept of combinational therapeutic strategy for the treatment of viral hemorrhagic fevers with broad spectrum host- and viral- targeting antiviral agents.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Doença pelo Vírus Ebola/virologia , Animais , Antivirais/farmacocinética , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Inibidores de Glicosídeo Hidrolases/farmacocinética , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Humanos , Camundongos , Replicação Viral/efeitos dos fármacos , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
18.
Antiviral Res ; 147: 37-46, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28982551

RESUMO

Stimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that serves as a molecular hub for activation of interferon and inflammatory cytokine response by multiple cellular DNA sensors. Not surprisingly, STING has been demonstrated to play an important role in host defense against microorganisms and pharmacologic activation of STING is considered as an attractive strategy to treat viral diseases and boost antitumor immunity. In light of this we established a HepAD38-derived reporter cell line that expresses firefly luciferase in response to the activation of cyclic GMP-AMP synthase (cGAS)-STING pathway for high throughput screening (HTS) of small molecular human STING agonists. This cell-based reporter assay required only 4 h treatment with a reference STING agonist to induce a robust luciferase signal and was demonstrated to have an excellent performance in HTS format. By screening 16,000 compounds, a dispiro diketopiperzine (DSDP) compound was identified to induce cytokine response in a manner dependent on the expression of functional human STING, but not mouse STING. Moreover, we showed that DSDP induced an interferon-dominant cytokine response in human skin fibroblasts and peripheral blood mononuclear cells, which in turn potently suppressed the replication of yellow fever virus, dengue virus and Zika virus. We have thus established a robust cell-based assay system suitable for rapid discovery and mechanistic analyses of cGAS-STING pathway agonists. Identification of DSDP as a human STING agonist enriches the pipelines of STING-targeting drug development for treatment of viral infections and cancers.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Imunidade Inata/efeitos dos fármacos , Indutores de Interferon/farmacologia , Proteínas de Membrana/agonistas , Nucleotidiltransferases/antagonistas & inibidores , Piperazinas/farmacologia , Compostos de Espiro/farmacologia , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Flavivirus/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Indutores de Interferon/química , Dose Letal Mediana , Proteínas de Membrana/genética , Camundongos , Mutação , Nucleotidiltransferases/genética , Piperazinas/química , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Compostos de Espiro/química , Fatores de Transcrição/genética , Replicação Viral/efeitos dos fármacos
19.
PLoS Pathog ; 13(9): e1006658, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945802

RESUMO

Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.


Assuntos
DNA Circular/biossíntese , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , DNA Circular/genética , DNA Viral , DNA Polimerase Dirigida por DNA/metabolismo , Hepatócitos/virologia , Humanos , Nucleocapsídeo/efeitos dos fármacos , Nucleocapsídeo/genética , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28717041

RESUMO

Induction of interferon and proinflammatory cytokines is a hallmark of the infection of many different viruses. However, hepatitis B virus (HBV) does not elicit a detectable cytokine response in infected hepatocytes. In order to investigate the molecular mechanism underlying the innate immune evasion, a functional cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway was reconstituted in a human hepatoma cell line supporting tetracycline-inducible HBV replication. It was demonstrated that induction of HBV replication neither activated nor inhibited this cytosolic DNA sensing pathway. However, human hepatoma cells, as well as immortalized mouse hepatocytes, express low levels of STING, which upon activation by cGAMP, the natural ligand of STING, led to induction of a proinflammatory cytokine response. Treatment of immortalized mouse hepatocytes supporting HBV replication with either cGAMP or a small molecule pharmacologic STING agonist significantly reduced viral DNA in a STING- and Janus kinase 1-dependent manner. Moreover, cGAMP treatment was able to induce inflammatory cytokine gene expression and inhibit the transcription of covalently closed circular DNA in HBV-infected human hepatoma cells expressing sodium taurocholate cotransporting polypeptide, an essential receptor for HBV infection of hepatocytes. The studies reported here and previously (F. Guo et al., Antimicrob Agents Chemother 59:1273-1281, 2015, https://doi.org/10.1128/AAC.04321-14) thus support the notion that pharmacological activation of STING in macrophages and hepatocytes induces host innate responses that can efficiently control HBV replication. Hence, despite not playing a significant role in host innate immune response to HBV infection of hepatocytes, STING is potentially a valuable target for immunotherapy of chronic hepatitis B.


Assuntos
Vírus da Hepatite B/crescimento & desenvolvimento , Hepatócitos/imunologia , Interferons/biossíntese , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Replicação Viral/genética , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Células Hep G2 , Vírus da Hepatite B/imunologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Interferons/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Membrana/agonistas , Camundongos , Nucleotidiltransferases/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA