Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Immunol Res ; 67(4-5): 398-407, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31773490


Limited protective effects of commercially available vaccines necessitate the development of novel pneumococcal vaccines. We recently reported a pneumococcal systemic vaccine containing two proteins, Pneumococcal surface protein A (PspA of family 1 and 2) and a bacterium-like particle-based pneumococcal mucosal vaccine containing PspA2 and PspA4 fragments, both eliciting broad protective immune responses. We had previously reported that subcutaneous (s.c.+s.c.+s.c.) immunization with the systemic vaccine induced more pronounced humoral serum IgG responses, while intranasal (i.n.+i.n.+i.n.) immunization with the mucosal vaccine elicited a more pronounced mucosal secretory IgA (sIgA) response. We hypothesized that a combinatorial administration of the two vaccines might elicit more pronounced and broader protective immune responses. Therefore, this study aimed to determine the efficacy of combinatorial prime-boost immunization using both systemic and mucosal vaccines for a pneumococcal infection. Combinatorial prime-boost immunization (s.c.+i.n. and i.n.+s.c.) induced not only IgG, but also mucosal sIgA production at high levels. Systemic priming and mucosal boosting immunization (s.c.+i.n.) provided markedly better protection than homologous prime-boost immunization (s.c.+s.c.+s.c. and i.n.+i.n.+i.n.). Moreover, it induced more robust Th1 and Th17 cell-mediated immune responses than mucosal priming and systemic boosting immunization (i.n.+s.c.). These results indicate that combinatorial prime-boost immunization potentially induces a robust systemic and mucosal immune response, making it an optimal alternative for maximum protection against lethal pneumococcal infections.

Inflammation ; 41(3): 751-759, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29427162


Fibroblast growth factor 21 (FGF-21) has been previously judged as a major metabolic regulator. In this paper, we show that FGF-21 has a potential role in anti-inflammation and immunoregulation. In vivo, treatment with exogenous FGF-21 can alleviate LPS-induced inflammation. In vitro, FGF-21 inhibited LPS-induced IL-1ß expression in THP-1 cells. Furthermore, besides the NF-κB pathway, the mechanism of action of FGF-21 was observed to involve the elevation of IL-10 in the ERK1/2 pathway. This study clearly indicates that FGF21 can be used as an attractive target for the management of inflammatory disorders. This piece of research indicates that FGF-21 could have much value in the management of inflammatory disorders.

Fatores de Crescimento de Fibroblastos/farmacologia , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Linhagem Celular , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Inflamação/induzido quimicamente , Interleucina-10/farmacologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
J Chromatogr A ; 1327: 27-38, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24418233


Recycling is a simple and efficient strategy for improving the peak resolution. In this work, a novel multi-channel recycling counter-current chromatography (CCC) was successfully established and three representative three-channel recycling CCC systems including 1R, 2R, and 3R CCC recycling on one, two, and three channel columns were developed for four typical tanshinones fractions. The results demonstrated that all recycling CCC separations were efficient for the isolation of targeted tanshinones. 1R CCC not only provided the single recycling separation, but also offered two parallel recycling separation or repeated preparation for multiple targets. 2R CCC provided the increased peak resolution and less risk of overlapping. 3R CCC offered versatile elution and recycling modes for multiple targets. Compared to 1R and 2R CCC, 3R CCC was easier to separate the more complex natural products with more targets in the complex natural extracts. In summary, the developed multi-channel recycling CCC systems including 1R, 2R, and 3R CCC were successful and efficient for resolving the complex natural tanshinones. To the best of our knowledge, this is the first document to report the multi-channel recycling CCC methods for the separation of tanshinones. They may be used as new multi-dimensional recycling CCC for targeted and non-targeted isolation of natural products. It may be widely used for current natural drug development and metabolome analysis.

/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Distribuição Contracorrente/métodos , Humanos