Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Food Chem ; 369: 130939, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469843

RESUMO

The purpose of this study was to investigate the dynamic change in volatile components during the yellowing process. The volatile components were analyzed by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and the critical enzyme activities were determined by commercial kits. The results revealed that 29 signal peaks for 20 compounds were identified, which were quantified in all samples: 1 furan, 1 ester, 15 aldehydes, 3 ketones, and 9 alcohols. The contents of most of these compounds increased first and then decreased at 36 h, which were basically consistent with the enzyme activities of LOX, HPL, ADH and AAT. Subsequently, principal component analysis (PCA) results clearly showed that the fresh-cut yams for different yellowing processes were well distinguished by the volatile compounds. These results showed that the potential of HS-GC-IMS-based approaches to evaluate the volatile compound profiles of fresh-cut yam at different stages in the yellowing period.


Assuntos
Dioscorea , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Mobilidade Iônica , Análise de Componente Principal , Compostos Orgânicos Voláteis/análise
2.
Commun Biol ; 4(1): 1171, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620988

RESUMO

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34593701

RESUMO

BACKGROUND: Screening and surveillance for colorectal cancer can reduce both the incidence of this disease and mortality rates attributed to it. Normally, surveillance intervals should be based on baseline colonoscopy findings, and clinicians focus on advanced polyps and perform patient risk stratification to devise surveillance schedules. The aim of the study was to determine differences in advanced colorectal polyp characteristics and consequent risk stratifications in patients of different age groups. MATERIAL AND METHODS: We retrospectively reviewed 14 312 patients during a 5-year period; a total of 13 842 polyps were stratified by their sizes, locations, and histologies. Participants were categorized into three age groups, the <45 years group, the 45-59 years group and the >59 years group, and each group was further stratified as normal, low risk, and high risk. RESULTS: The <45 years group included 2431 subjects, the 45-59 years group 6258 subjects, and the >59 years group 5623 subjects. The frequency of adenoma and advanced polyps in the proximal colon slightly increased with age. Only 1.0% in the <45 years and 1.3% in the 45-59 years groups of subcentimeter polyps were identified as advanced polyps, less than that in the >59 years group (2.1%). Most patients, especially the elderly, considered as high risk had multiple subcentimeter adenomas. CONCLUSION: The processing strategy proposed for subcentimeter polyps in the elderly still needs to be further explored in the future. Clinicians should recognize the importance of performing a detailed scan of the entire colon.

5.
Insect Biochem Mol Biol ; 139: 103668, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34624465

RESUMO

Lipids are a critical source of stored energy in insects, and their metabolism is essential for growth, development, and reproduction. Adequate provisioning of lipids and yolk proteins in the oocytes is essential to ensure reproductive output. Therefore, it is particularly important to understand the molecular mechanisms linking lipid metabolism and reproduction. Lipin proteins are emerging as pivotal modulators of lipid metabolism. They exert a dual function as phosphatidate phosphatase enzymes involved in lipid synthesis and as transcriptional coactivators of genes related to lipid metabolism. However, the functional relationship between lipid metabolism and reproduction remains unclear. In this study, the role of lipin protein in the reproduction of female cabbage beetle Colaphellus bowringi was examined. It was found that Lipin was broadly expressed in the tissues of adult females, with relatively high transcript levels in the head, midgut, fat body, malpighian tubules, and epidermis. RNA interference experiments were conducted using double-stranded RNA against Lipin in C. bowringi females. Lipin silencing blocked ovarian development and strongly suppressed transcription of vitellogenin and vitellogenin receptor genes. In addition, the reduction in Lipin expression led to a rapid increase in lipid storage in the fat body and also promoted the expression of genes related to lipid synthesis and stress tolerance. Overall, these results suggest that a Lipin-mediated lipolytic system is essential for maintaining lipid homeostasis during reproduction in C. bowringi. The findings of this study provide a foundation for future studies on the relationship between lipid metabolism and reproduction in invertebrates.

6.
Diabetol Metab Syndr ; 13(1): 106, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627359

RESUMO

BACKGROUND: Evidence suggests gut microbiome is associated with diabetes. However, it's unclear whether the association remains in non-diabetic participants. A Chinese monozygotic twin study, in which the participants are without diabetes, and are not taking any medications, was conducted to explore the potential association. METHODS: Nine pairs of adult monozygotic twins were enrolled and divided into two twin-pair groups (a and b). Clinical and laboratory measurements were conducted. Visceral adipose tissue (VAT) was assessed. Fecal samples were collected to analyze the microbiome composition by 16S rDNA gene amplicon sequencing. Liquid chromatography mass spectrometry was performed to detect the metabolites. RESULTS: The participants aged 53 years old averagely, with 8 (88.9%) pairs were women. All the participants were obese with VAT higher than 100 cm2 (152.2 ± 31.6). There was no significant difference of VAT between the twin groups (153.6 ± 30.4 cm2 vs. 150.8 ± 29.5 cm2, p = 0.54). Other clinical measurements, including BMI, lipid profiles, fasting insulin and blood glucose, were also not significantly different between groups (p ≥ 0.056), whereas HbA1c level of group a is significantly higher than group b (5.8 ± 0.3% vs. 5.6 ± 0.2%, p = 0.008). The number and richness of OTUs are relatively higher in group a, and 13 metabolites were significantly different between two groups. Furthermore, several of the 13 metabolites could be significantly linked to special taxons. The potential pathway involved drug metabolism-other enzymes, Tryptophan metabolism and Citrate cycle. CONCLUSIONS: Gut microbiome composition and their metabolites may modulate glucose metabolism in obese adults without diabetes, through Tryptophan metabolism, Citrate cycle and other pathways.

7.
Brief Bioinform ; 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581409

RESUMO

Long non-coding RNAs (lncRNAs) that emanate from enhancer regions (defined as enhancer-associated lncRNAs, or elncRNAs) are emerging as critical regulators in disease progression. However, their biological characteristics and clinical relevance have not been fully portrayed. Here, based on the traditional expression quantitative loci (eQTL) and our optimized residual eQTL method, we comprehensively described the genetic effect on elncRNA expression in more than 300 lymphoblastoid cell lines. Meanwhile, a chromatin atlas of elncRNAs relative to the genetic regulation state was depicted. By applying the maximum likelihood estimate method, we successfully identified causal elncRNAs for protein-coding gene expression reprogramming and showed their associated single nucleotide polymorphisms (SNPs) favor binding of transcription factors. Further epigenome analysis revealed two immune-associated elncRNAs AL662844.4 and LINC01215 possess high levels of H3K27ac and H3K4me1 in human cancer. Besides, pan-cancer analysis of 3D genome, transcriptome, and regulatome data showed they potentially regulate tumor-immune cell interaction through affecting MHC class I genes and CD47, respectively. Moreover, our study showed there exist associations between elncRNA and patient survival. Finally, we made a user-friendly web interface available for exploring the regulatory relationship of SNP-elncRNA-protein-coding gene triplets (http://bio-bigdata.hrbmu.edu.cn/elncVarReg). Our study provides critical mechanistic insights for elncRNA function and illustrates their implications in human cancer.

8.
Epigenomics ; 13(17): 1347-1358, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34558967

RESUMO

Aim: To determine whether the promoters of long noncoding RNAs (lncRNAs) undergo dynamic changes in DNA methylation during fetal development. Methods: ANOVA and the tissue specificity index were used to identify and validate tissue-specific methylation sites. Age-associated DNA methylation signatures were identified by applying the elastic net method. Results: The lncRNA methylome landscape was characterized in four types of fetal tissue and at three gestational time points, and specific characteristics relative to the tissue of origin and developmental age were identified. Higher levels of lncRNA methylation might be involved in tissue differentiation. LncRNAs harboring age-associated methylation signatures may participate in the fetal developmental process. Conclusion: This study provides novel insights into the role of lncRNA methylomes in fetal tissue specification and development.

9.
Vaccines (Basel) ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34579217

RESUMO

Virus-like particles (VLPs) are non-replicative vectors for the delivery of heterologous epitopes and are considered one of the most potent inducers of cellular and humoral immune responses in mice and guinea pigs. In the present study, VLP-JEVe was constructed by the insertion of six Japanese encephalitis virus (JEV) envelope protein epitopes into different surface loop regions of PPV VP2 by the substitution of specific amino acid sequences without altering the assembly of the virus; subsequently, the protective efficacy of this VLP-JEVe was evaluated against JEV challenge in mice and guinea pigs. Mice immunized with the VLP-JEVe antigen developed high titers of neutralizing antibodies and 100% protection against lethal JEV challenge. The neutralizing and hemagglutination inhibition (HI) antibody responses were also induced in guinea pigs vaccinated with VLP-JEVe. In addition, immunization with VLP-JEVe in mice induced effective neutralizing antibodies and protective immunity against PPV (porcine parvovirus) challenge in guinea pigs. These studies suggest that VLP-JEVe produced as described here could be a potential candidate for vaccine development.

10.
J Colloid Interface Sci ; 607(Pt 1): 782-790, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34536935

RESUMO

HYPOTHESIS: Due to the intrinsic nature of the surface-enhanced Raman scattering (SERS), the detection of molecules with weak binding affinities toward metal substrates is critical for development of a universal SERS sensing platform. We hypothesized the physical trapping of small pesticide molecules for active hot spot generation using tyramine-mediated crosslinking chemistry and silver nanoparticles (Ag NPs) enhances SERS detection sensitivity. EXPERIMENTS: Tyramine-mediated crosslinking chemistry for sensor application was validated by ultraviolet-visible absorption spectroscopy, scanning electron microscopy, dynamic light scattering, and Raman spectroscopy. SERS sensing platform using tyramine-mediated crosslinking reaction was systematically studied for detection of 1,4-dyethylnylbenzene as a model analyte. This sensor system was applied to detect two other pesticides, thiabendazole and 1,2,3,5-tetrachlorobenzene, which have different binding affinities toward metal surfaces. FINDINGS: The SERS signal of 1,4-dyethylnylbenzene obtained using this sensor system was 3.6 times stronger than that obtained using the Ag colloidal due to the nanogap of approximately 1.3 nm within the generated hot spots. This sensor system based on tyramine-mediated crosslinked Ag NPs was evaluated as a promising tool to achieve a solution based sensitive detection of various pesticide molecules that cannot be adsorbed on the surfaces of typical SERS substrates such as metal nanoparticles.

11.
Acta Biomater ; 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34487859

RESUMO

Mucoadhesive and mucopenetrating nanoparticles are commonly designed to improve mucosal drug delivery efficiency. Herein, in order to better understand the contribution of mucoadhesion and mucopenetration in oral delivery of biomacromolecules, insulin-loaded poly (n-butylcyanoacrylate) nanoparticles (Ins/PBCA NPs) with different coating layers, chitosan (CS) or alginate (Alg), were designed and their different absorption enhancing mechanisms were explored. It was demonstrated that both the mucoadhesive (Ins/PBCA/CS) and the mucopenetrating (Ins/PBCA/CS/Alg) nanoparticles showed good stability and similar release profiles in the gastrointestinal fluid, the mucoadhesive nanoparticles presented an enrichment in mucus (70%, 10 min) while most of the mucopenetrating nanoparticles penetrated through the mucus (80%, 10 min). Uptake mechanism studies revealed clathrin- and caveolae-mediated endocytosis were mainly involved in the intestinal transport of mucoadhesive nanoparticles while caveolae-mediated endocytosis and macropinocytosis contributed to the absorption of mucopenetrating nanoparticles, and especially, M cells favored the absorption of mucoadhesive nanoparticles. In vivo studies revealed that the mucopenetrating nanoparticles had a fast onset of action while the mucoadhesive nanoparticles presented a sustained hypoglycemic effect in diabetic rats, and overall no significant difference in pharmacological availability was found between the mucopenetrating (8.80%) and mucoadhesive nanoparticles (8.44%). To sum up, due to the varied absorption mechanism in intestine, the mucoadhesive nanoparticles designed herein had a comparable effect in enhancing oral insulin absorption compared with the mucopenetrating nanoparticles. STATEMENT OF SIGNIFICANCE: In order to improve oral delivery efficiency of insulin, insulin-loaded nanoparticles with opposite properties namely mucoadhesion and mucopenetration have been widely developed to either prolong their residence at the absorption site or improve their penetration across mucus. However, their individual contribution in oral insulin absorption is still unclear. In this paper, insulin-loaded poly (n-butylcyanoacrylate) nanoparticles with both properties were designed via different surface coating and their absorption enhancing mechanisms were explored. It was demonstrated that the mucoadhesive and mucopenetrating nanoparticles showed varied retention and mucus-penetration ability in mucus, with different absorption mechanism in intestine, but no statistical difference in pharmacological availability was found between them. Overall, the present work provides us a guidance for the design of oral nano-delivery system.

12.
Insect Biochem Mol Biol ; 139: 103654, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571141

RESUMO

In insects, the juvenile hormone (JH) biosynthetic pathway regulates the in vivo JH titer. Thus, its downregulation potentially contributes to the lowering of JH titers typically observed in insects undergoing reproductive diapause, a developmental arrest at the adult stage. However, no systematic evidence has yet been presented to demonstrate the physiological and genetic roles of JH biosynthetic genes in reproductive diapause. In this work, we performed RNA interference (RNAi)-based reverse genetic analyses by targeting JH biosynthetic genes, followed by analysis of the reproductive diapause traits in Colaphellus bowringi, an economically important cabbage beetle. We identified a total of 22 genes encoding homologues of enzymes involved in the mevalonate pathway and the JH branch of JH biosynthesis in C. bowringi. Among these, 18 genes showed significant downregulation of their expression in the long day-induced diapausing females, compared to the short day-induced reproductive females. RNAi knockdown of almost any one of the 18 genes in reproductive females reduced the expression of the JH-responsive gene, Krüppel homolog1 (Kr-h1), indicating a lowered circulating JH. Most importantly, depleting transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase 2 (HMGR2), farnesyl-pyrophosphate synthase 1 (FPPS1) and juvenile hormone acid methyltransferase 1 (JHAMT1) induced diapause-associated traits, including immature and inactive ovaries, large accumulations of lipids and adult burrowing behavior. Meanwhile, genes related to ovarian development, lipid accumulation and stress response showed expression patterns like those of diapausing females. RNAi-mediated diapause phenotypes could be reversed to reproductive phenotypes by application of methoprene, a JH receptor agonist. These results suggest that photoperiodic reproductive diapause in C. bowringi is triggered by transcriptional suppression of JH biosynthetic genes, with HMGR2, FPPS1 and JHAMT1 playing a critical role in this process. This work provides sufficient evidence to reveal the physiological roles of JH biosynthetic genes in reproductive diapause.

13.
Sci Rep ; 11(1): 15892, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354119

RESUMO

Neurogenic bowel dysfunction, including hyperreflexic and areflexic bowel, is a common complication in patients with spinal cord injury (SCI). We hypothesized that removing part of the colonic sympathetic innervation can alleviate the hyperreflexic bowel, and investigated the effect of sympathectomy on the hyperreflexic bowel of SCI rats. The peri-arterial sympathectomy of the inferior mesenteric artery (PSIMA) was performed in T8 SCI rats. The defecation habits of rats, the water content of fresh faeces, the intestinal transmission function, the defecation pressure of the distal colon, and the down-regulation of Alpha-2 adrenergic receptors in colon secondary to PSIMA were evaluated. The incidence of typical hyperreflexic bowel was 95% in SCI rats. Compared to SCI control rats, PSIMA increased the faecal water content of SCI rats by 5-13% (P < 0.05), the emptying rate of the faeces in colon within 24 h by 14-40% (P < 0.05), and the defecation pressure of colon by 10-11 mmHg (P < 0.05). These effects lasted for at least 12 weeks after PSIMA. Immunofluorescence label showed the secondary down-regulation of Alpha-2 adrenergic receptors after PSIMA occurred mainly in rats' distal colon. PSIMA mainly removes the sympathetic innervation of the distal colon, and can relieve the hyperreflexic bowel in rats with SCI. The possible mechanism is to reduce the inhibitory effect of sympathetic activity, and enhance the regulatory effect of parasympathetic activity on the colon. This procedure could potentially be used for hyperreflexic bowel in patients with SCI.

14.
Toxicology ; 460: 152881, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358621

RESUMO

Myocardial apoptosis and necroptosis are the major etiological factor during doxorubicin (DOX) induced cardiotoxicity, and one of the important reasons that limit the drug's clinical application. Up to date, its mechanism has not been fully elucidated. The protective role of phosphocreatine (PCr) in heart surgery and medical cardiology has been observed in numerous clinical trials. This study aimed to evaluate cardioprotective actions of PCr against DOX-induced cardiotoxicity and investigate the underlying mechanism involving in transforming growth factor ß-activated kinase 1 (TAK1) mediated myocardial survive signaling pathway. Male Sprague-Dawleyrats were intraperitoneally (ip) injected with normal saline (NS) or DOX (2 mg/kg) alone or DOX with PCr (200 mg/kg) used as animal model. The data showed that DOX significantly impaired cardiac function and structure, induced oxidative stress, myocardial apoptosis and necroptosis, and dramatically down-regulated the expression level of TAK1, while the intervention of PCr obviously attenuated cardiac dysfunction, oxidative stress, myocardial apoptosis and necroptosis, especially alleviated the decrease of TAK1 expression. In vitro analysis, after H9c2 cells were pretreated with or without PCr (0.5 mM) or N-Acetyl-L-cysteine (NAC, 0.5 mM) or 5Z-7-oxozeaenol (5z-7-Ox, 1 µM) for 1 h, subsequently treated with DOX (1 µM) for 24 h. The results revealed that inhibition of TAK1 further deteriorated apoptotic and necroptotic cell death induced by DOX in H9c2 cells, but didn't affect oxidative stress. While the pretreatment of PCr or NAC enhanced antioxidant activity to reduce oxidative stress, significantly alleviated apoptotic and necroptotic cell death induced by DOX in H9c2 cells. Consistent with the results in vivo, PCr or NAC significantly inhibited the decrease of TAK1 expression induced by DOX. In conclusion, oxidative stress induced by DOX inhibits the expression of TAK1, and leads to myocardial apoptotic and necroptotic death, while the intervention of PCr increases antioxidant activity to alleviate oxidative stress, which in turn activates TAK1 signaling pathway to promote myocardial survival, and finally attenuate DOX-induced cardiotoxicity.


Assuntos
Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , MAP Quinase Quinase Quinases/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfocreatina/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Masculino , Miocárdio/patologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
15.
J Phys Chem Lett ; 12(31): 7612-7618, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34351168

RESUMO

Herein, we fabricated a uniform and dispersible Ag/indium tin oxide (ITO) cosputtered film on a two-dimensional ordered polystyrene template and observed distinct localized surface plasmon resonance (LSPR) properties that can be tuned by changing the doping level. The increase in the optical band gap is due to the variation in the metallic Ag content, which can effectively change the accumulation of free electrons in the conduction band, in addition to the near-IR absorbance. Surface-enhanced Raman scattering (SERS) was used to monitor the variations in the band gap and transfer of electrons, which causes variations in the SERS intensity. The presented research provides new insights into the relationships between the carrier density and maximum absorption wavelength, band gap distribution, and charge transfer process. This is the first study on the influence of the carrier density on the properties of Ag/ITO cosputtered films and suggests practical applications of these films.

16.
Exp Ther Med ; 22(3): 990, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34345272

RESUMO

Saxagliptin (SAX) can protect against tissue damage caused by diabetic nephropathy. However, whether this compound can restore kidney function, and its specific mechanism of action remain unclear. The present study explored the therapeutic effects and mechanisms of SAX. Male Wistar rats (8 weeks old) were randomly divided into the following groups: A control group (n=10); a group with streptozocin-induced diabetes mellitus (DM) treated with saline (n=20); and a group with streptozocin-induced DM treated with SAX (n=20). Following 20 weeks of treatment, renal function and the extent of renal damage were assessed based on histological staining using hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome staining. The experimental results indicated that Streptozocin induction of DM led to thicker basement membranes in mesangial cells and a more abundant extracellular matrix. These changes were ameliorated following treatment with SAX. The data demonstrated that renal tissue and renal cell apoptosis were ameliorated significantly following treatment with SAX. Furthermore, the expression levels of the apoptotic genes poly (ADP-ribose) polymerase-1 (PARP-1) and caspase 3 were significantly decreased following treatment with SAX. Therefore, SAX may reduce the extent of renal apoptosis and pathological outcomes in diabetic nephropathy by downregulating the expression of caspase 3 and PARP-1 in the death receptor pathway of apoptosis.

17.
Viruses ; 13(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202310

RESUMO

Efforts to cure HIV-1 infection require better quantification of the HIV-1 reservoir, particularly the clones of cells harboring replication-competent (intact) proviruses, termed repliclones. The digital droplet PCR assays commonly used to quantify intact proviruses do not differentiate among specific repliclones, thus the dynamics of repliclones are not well defined. The major challenge in tracking repliclones is the relative rarity of the cells carrying specific intact proviruses. To date, detection and accurate quantification of repliclones requires in-depth integration site sequencing. Here, we describe a simplified workflow using integration site-specific qPCR (IS-qPCR) to determine the frequencies of the proviruses integrated in individual repliclones. We designed IS-qPCR to determine the frequencies of repliclones and clones of cells that carry defective proviruses in samples from three donors. Comparing the results of IS-qPCR with deep integration site sequencing data showed that the two methods yielded concordant estimates of clone frequencies (r = 0.838). IS-qPCR is a potentially valuable tool that can be applied to multiple samples and cell types over time to measure the dynamics of individual repliclones and the efficacy of treatments designed to eliminate them.

18.
J Inflamm Res ; 14: 3123-3128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285538

RESUMO

Objective: Patients with rheumatic immune diseases were more likely to develop severe or critical COVID-19. We aimed to determine whether rheumatoid factor antibodies were present in COVID patients and the level and type of rheumatoid factor antibodies produced in COVID-19 patients were related to the degree of the patient's condition. The study also aimed to determine the prevalence and characteristics of rheumatoid factor antibodies in patients with COVID-19. Methods: Sera collected from 129 patients with COVID-19 were tested for rheumatoid factor antibodies by ELISA. Five patients were tracked for several months to monitor dynamic changes of these antibodies. Results: Rheumatoid-associated autoantibodies were detected in 20.16% of patients (26/129) following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, IgM-RF was primarily present in critically ill patients, while IgA-RF was mainly present in mild patients. Five patients were able to track for several months to monitor dynamic changes of these antibodies. Rheumatoid factor antibodies peaks in the later phase of the disease and last for longer time. Anti-Jo-1 antibody was found in one of the five patients. Conclusion: This was the case series report that rheumatoid-associated autoantibodies are present in patients with COVID-19. The clinical significance of these antibodies was not fully understood and needed further characterization. These autoantibodies are related to the severity of the patient's disease and exist for a long time in the patient's body, while their impact on the patient's health is unknown.

19.
J Pharm Biomed Anal ; 204: 114273, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34304010

RESUMO

Ba-Bao-Dan (BBD) is a well-known Traditional Chinese medicine (TCM) prescription in China. It was first formulated in approximately 1555 AD. As one of the National Protected TCM, it is widely used to treat jaundice, viral hepatitis, cholecystitis, acute urinary tract infection, cancer, and other diseases. It is a healthcare medicine that is used to prevent many diseases in China. In other Asian countries and in European and American countries, BBD is used as a drug to protect the liver. However, a systematic quality study on BBD chemical markers has not been carried out. This study aimed to establish an ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method for the quantitative determination of 43 compounds in BBD. Furthermore, the method was used to further find chemical markers for quality control through the combination with chemometrics. The modified chromatographic conditions were achieved on Waters Cortecs C18 column (2.1 × 100 mm, 1.6 µm) with a gradient elution consisting of 0.1 % formic acid in water and acetonitrile with methanol (1:1, V/V). All analytes were determined in the multiple reaction monitoring mode. The method was validated for linearity, detection limits, precision, repeatability, stability and accuracy. The method was used to analyze the 43 compounds in 11 batches of BBD samples. Hierarchical cluster analysis and principal component analysis were applied to evaluate intrinsic quality of BBD and to identify the potential chemical markers for quality control. In conclusion, the method rapidly and sensitively determined the 43 compounds, among which 10 compounds, namely, N-Gin R1, Gin Re, Gin Rg1, Gin Rb1, GCA, Gin Rd, CA, TCA, CDCA, and DCA, were considered as the potential chemical markers for BBD quality control.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Medicina Tradicional Chinesa , Controle de Qualidade
20.
Adv Sci (Weinh) ; 8(11): 2004605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34141523

RESUMO

Droplet vitrification has emerged as a promising ice-free cryopreservation approach to provide a supply chain for off-the-shelf cell products in cell therapy and regenerative medicine applications. Translation of this approach requires the use of low concentration (i.e., low toxicity) permeable cryoprotectant agents (CPA) and high post cryopreservation viability (>90%), thereby demanding fast cooling and warming rates. Unfortunately, with traditional approaches using convective heat transfer, the droplet volumes that can be successfully vitrified and rewarmed are impractically small (i.e., 180 picoliter) for <2.5 m permeable CPA. Herein, a novel approach to achieve 90-95% viability in micro-liter size droplets with 2 m permeable CPA, is presented. Droplets with plasmonic gold nanorods (GNRs) are printed onto a cryogenic copper substrate for improved cooling rates via conduction, while plasmonic laser heating yields >400-fold improvement in warming rates over traditional convective approach. High viability cryopreservation is then demonstrated in a model cell line (human dermal fibroblasts) and an important regenerative medicine cell line (human umbilical cord blood stem cells). This approach opens a new paradigm for cryopreservation and rewarming of dramatically larger volume droplets at lower CPA concentration for cell therapy and other regenerative medicine applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...