Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Life Sci ; 242: 117240, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891722


Lycium barbarum polysaccharides (LBP) are derived from Wolfberry and have antioxidant activities. This study aimed to evaluate the efficacy of LBP for kidney injury in a rat model of sepsis. Male rats were divided randomly to control group (Con), LPS group (LPS), ulinastatin group (ULI), low dose LBP group (LBP-1), middle dose LBP group (LBP-2) and high dose LBP group (LBP-3). After intraperitoneal injection of LPS (5 mg/kg) to make sepsis model (LPS group), 10,000 U/kg ulinastatin were given in ULI group, and 200, 400 and 800 mg/kg LBP was given in LBP-1, -2, -3 group, respectively. Serum IL-1ß, IL-6, IL-8, TNF-α and NF-κB levels were measured by ELISA. Nrf2, Keap1, NF-κB, HO-1 and NQO1 expression levels were detected by PCR and Western blot analysis. We found that LBP decreased the levels of NF-κB and pro-inflammatory cytokines while attenuated kidney injury. In addition, LBP regulated Keap1-Nrf2/ARE signaling pathway in the kidney. In conclusion, LBP attenuates inflammation injury in the kidney via possible regulation of Keap1-Nrf2/ARE signaling.

Lesão Renal Aguda/prevenção & controle , Elementos de Resposta Antioxidante/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sepse/complicações , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
Neuroscience ; 340: 319-332, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27826105


Our former study demonstrated that Krüppel-like Factor 7 (KLF7) is a transcription factor that stimulates axonal regeneration after peripheral nerve injury. Currently, we used a gene therapy approach to overexpress KLF7 in Schwann cells (SCs) and assessed whether KLF7-transfected SCs graft could promote sciatic nerve regeneration. SCs were transfected by adeno-associated virus 2 (AAV2)-KLF7 in vitro. Mice were allografted by an acellular nerve (ANA) with either an injection of DMEM (ANA group), SCs (ANA+SCs group) or AAV2-KLF7-transfected SCs (ANA+KLF7-SCs group) to assess repair of a sciatic nerve gap. The results indicate that KLF7 overexpression promoted the proliferation of both transfected SCs and native SCs. The neurite length of the dorsal root ganglia (DRG) explants was enhanced. Several beneficial effects were detected in the ANA+KLF7-SCs group including an increase in the compound action potential amplitude, sciatic function index score, enhanced expression of PKH26-labeling transplant SCs, peripheral myelin protein 0, neurofilaments, S-100, and myelinated regeneration nerve. Additionally, HRP-labeled motoneurons in the spinal cord, CTB-labeled sensory neurons in the DRG, motor endplate density and the weight ratios of target muscles were increased by the treatment while thermal hyperalgesia was diminished. Finally, expression of KLF7, NGF, GAP43, TrkA and TrkB were enhanced in the grafted SCs, which may indicate that several signal pathways may be involved in conferring the beneficial effects from KLF7 overexpression. We concluded that KLF7-overexpressing SCs promoted axonal regeneration of the peripheral nerve and enhanced myelination, which collectively proved KLF-SCs as a novel therapeutic strategy for injured nerves.

Fatores de Transcrição Kruppel-Like/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Células de Schwann/transplante , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Aloenxertos , Animais , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Dependovirus/genética , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Atividade Motora/fisiologia , Placa Motora/metabolismo , Placa Motora/patologia , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/cirurgia , Distribuição Aleatória , Células de Schwann/patologia , Nervo Isquiático/patologia , Transfecção
Int J Ophthalmol ; 6(1): 54-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23550266


AIM: To investigate the expressions of type I collagen, α2 integrin and ß1 integrin in the posterior sclera of guinea pigs with defocus myopia and whether basic fibroblast growth factor (bFGF) injection inhibits the formation and development of myopia by upregulating the expression of type I collagen, α2 integrin and ß1 integrin. METHODS: After 14 days of treatment, the refractive state and axial length were measured and the levels of type I collagen, α2 integrin and ß1 integrin were assayed in the posterior sclerae of groups of guinea pigs that wore a monocular -7D polymethylmethacrylate (PMMA) lens or had -7D lens wear followed by the peribulbar injection of Phosphate Buffer Solution (PBS) or bFGF. The untreated fellow eye served as a control. Guinea pigs with no treatment served as normal group. RESULTS: The results showed that 14 days of monocular defocus increased axial eye length and refraction, while bFGF delivery inhibited them markedly. Further, it was also found that the monocular -7D lens could decrease the levels of type I collagen, α2 integrin and ß1 integrin expressions, while, unlike PBS, bFGF increased them significantly in comparison to contralateral control eyes and normal eyes. CONCLUSION: bFGF can prevent the formation and development of defocus myopia by upregulating the expressions of type I collagen, α2 integrin and ß1 integrin. Taken together, our results demonstrate that bFGF promotes sclera remodeling to prevent myopia in guinea pigs.

Chin Med J (Engl) ; 125(12): 2195-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22884152


BACKGROUND: Parthenolide has been tested for anti-tumor activities, such as anti-proliferation and pro-apoptosis in recent studies. However, little is known about its role in the process of tumor angiogenesis. This study aims to investigate the effects and potential mechanisms of parthenolide on the proliferation, migration and lumen formation capacity of human umbilical vein endothelial cells. METHODS: Different concentrations of parthenolide were applied to the human breast cancer cell line MDA-MB-231 cells. After 24-hour incubation, the culture supernatants were harvested and used to treat human umbilical vein endothelial cells for 24 hours. Then an inverted fluorescence phase contrast microscope was used to evaluate the human umbilical vein endothelial cells. The secretion of vascular endothelial growth factor (VEGF), interleukin (IL)-8 and matrix metalloproteinases (MMP)-9 in the culture supernatant of the MDA-MB-231 cells was then measured with enzyme-linked immunosorbent assay (ELISA) assays. RESULTS: Suppression of proliferation, migration, and the lumen formation capacity of human umbilical vein endothelial cells was observed in the presence of the culture supernatants from the breast cancer cell line treated with different concentrations of parthenolide. Parthenolide decreased the levels of the angiogenic factors MMP-9, VEGF, and IL-8 secreted by the MDA-MB-231 cells. CONCLUSIONS: Parthenolide may suppress angiogenesis through decreasing angiogenic factors secreted by breast cancer cells to interfere with the proliferation, migration and lumen-like structure formation of endothelial cells, thereby inhibiting tumor growth. It is a promising potential anti-angiogenic drug.

Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo