Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543516

RESUMO

BACKGROUND: We aimed to evaluate the associations between calcium and various stages of colorectal carcinogenesis and whether these associations are modified by the calcium to magnesium (Ca:Mg) ratio. METHODS: We tested our hypotheses in the prostate lung, colorectal and ovarian cancer screening trial. RESULTS: Calcium intake did not show a dose-response association with incident adenoma of any size/stage (P-trend = 0.17), but followed an inverse trend when restricted to synchronous/advanced adenoma cases (P-trend = 0.05). This inverse trend was mainly in participants with Ca:Mg ratios between 1.7 and 2.5 (P-trend = 0.05). No significant associations were observed for metachronous adenoma. Calcium intake was inversely associated with CRC (P-trend = 0.03); the association was primarily present for distal CRC (P-trend = 0.01). The inverse association between calcium and distal CRC was further modified by the Ca:Mg ratio (P-interaction < 0.01); significant dose-response associations were found only in participants with a Ca:Mg ratio between 1.7 and 2.5 (P-trend = 0.04). No associations for calcium were found in the Ca:Mg ratio above 2.5 or below 1.7. CONCLUSION: Higher calcium intake may be related to reduced risks of incident advanced and/or synchronous adenoma and incident distal CRC among subjects with Ca:Mg intake ratios between 1.7 and 2.5.

2.
BMC Med Genomics ; 12(1): 131, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533728

RESUMO

BACKGROUND: Although APOBEC-mutational signature is found in tumor tissues of multiple cancers, how a common germline APOBEC3A/B deletion affects the mutational signature remains unclear. METHODS: Using data from 10 cancer types generated as part of TCGA, we performed integrative genomic and association analyses to assess inter-relationship of expressions for isoforms APOBEC3A and APOBEC3B, APOBEC-mutational signature, germline APOBEC3A/B deletions, neoantigen loads, and tumor infiltration lymphocytes (TILs). RESULTS: We found that expression level of the isoform uc011aoc transcribed from the APOBEC3A/B chimera was associated with a greater burden of APOBEC-mutational signature only in breast cancer, while germline APOBEC3A/B deletion led to an increased expression level of uc011aoc in multiple cancer types. Furthermore, we found that the deletion was associated with elevated APOBEC-mutational signature, neoantigen loads and relative composition of T cells (CD8+) in TILs only in breast cancer. Additionally, we also found that APOBEC-mutational signature significantly contributed to neoantigen loads and certain immune cell abundances in TILs across cancer types. CONCLUSIONS: These findings reveal new insights into understanding the genetic, biological and immunological mechanisms through which APOBEC genes may be involved in carcinogenesis, and provide potential genetic biomarker for the development of disease prevention and cancer immunotherapy.

3.
Am J Hum Genet ; 105(3): 477-492, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402092

RESUMO

Genome-wide association studies (GWASs) have identified hundreds of genetic risk variants for human cancers. However, target genes for the majority of risk loci remain largely unexplored. It is also unclear whether GWAS risk-loci-associated genes contribute to mutational signatures and tumor mutational burden (TMB) in cancer tissues. We systematically conducted cis-expression quantitative trait loci (cis-eQTL) analyses for 294 GWAS-identified variants for six major types of cancer-colorectal, lung, ovary, prostate, pancreas, and melanoma-by using transcriptome data from the Genotype-Tissue Expression (GTEx) Project, the Cancer Genome Atlas (TCGA), and other public data sources. By using integrative analysis strategies, we identified 270 candidate target genes, including 99 with previously unreported associations, for six cancer types. By analyzing functional genomic data, our results indicate that 180 genes (66.7% of 270) had evidence of cis-regulation by putative functional variants via proximal promoter or distal enhancer-promoter interactions. Together with our previously reported associations for breast cancer risk, our results show that 24 genes are shared by at least two cancer types, including four genes for both breast and ovarian cancer. By integrating mutation data from TCGA, we found that expression levels of 33 and 66 putative susceptibility genes were associated with specific mutational signatures and TMB of cancer-driver genes, respectively, at a Bonferroni-corrected p < 0.05. Together, these findings provide further insight into our understanding of how genetic risk variants might contribute to carcinogenesis through the regulation of susceptibility genes that are related to the biogenesis of somatic mutations.

4.
Int J Cancer ; 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265136

RESUMO

A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10-4 -3.28 × 10-8 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.

5.
Cancer Res ; 79(18): 4592-4598, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337649

RESUMO

Several blood protein biomarkers have been associated with prostate cancer risk. However, most studies assessed only a small number of biomarkers and/or included a small sample size. To identify novel protein biomarkers of prostate cancer risk, we studied 79,194 cases and 61,112 controls of European ancestry, included in the PRACTICAL/ELLIPSE consortia, using genetic instruments of protein quantitative trait loci for 1,478 plasma proteins. A total of 31 proteins were associated with prostate cancer risk including proteins encoded by GSTP1, whose methylation level was shown previously to be associated with prostate cancer risk, and MSMB, SPINT2, IGF2R, and CTSS, which were previously implicated as potential target genes of prostate cancer risk variants identified in genome-wide association studies. A total of 18 proteins inversely correlated and 13 positively correlated with prostate cancer risk. For 28 of the identified proteins, gene somatic changes of short indels, splice site, nonsense, or missense mutations were detected in patients with prostate cancer in The Cancer Genome Atlas. Pathway enrichment analysis showed that relevant genes were significantly enriched in cancer-related pathways. In conclusion, this study identifies 31 candidates of protein biomarkers for prostate cancer risk and provides new insights into the biology and genetics of prostate tumorigenesis. SIGNIFICANCE: Integration of genomics and proteomics data identifies biomarkers associated with prostate cancer risk.

7.
Cancer Epidemiol Biomarkers Prev ; 28(8): 1308-1315, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31160347

RESUMO

BACKGROUND: Pathogenic variants in susceptibility genes lead to increased breast cancer risk. METHODS: To identify coding variants associated with breast cancer risk, we conducted whole-exome sequencing in genomic DNA samples from 831 breast cancer cases and 839 controls of Chinese women. We also genotyped samples, including 4,580 breast cancer cases and 6,695 controls, using whole exome-chip arrays. We further performed a replication study using a Multi-Ethnic Global Array in samples from 1,793 breast cases and 2,059 controls. A single marker analysis was performed using the Fisher exact test. RESULTS: We identified a missense variant (rs139379666, P2974L; AF = 0.09% for breast cancer cases, but none for controls) in the ATM gene for breast cancer risk using combing data from 7,204 breast cancer cases and 9,593 controls (P = 1.7 × 10-5). To investigate the functionality of the variant, we first silenced ATM and then transfected the overexpression vectors of ATM containing the risk alleles (TT) or reference alleles (CC) of the variant in U2OS and breast cancer SK-BR3 cells, respectively. Our results showed that compared with the reference allele, the risk allele significantly disrupts the activity of homologous recombination-mediated double-strand breaks repair efficiency. Our results further showed that the risk allele may play a defected regulation role in the activity of the ATM structure. CONCLUSIONS: Our findings identified a novel mutation that disrupts ATM function, conferring to breast cancer risk. IMPACT: Functional investigation of genetic association findings is necessary to discover a pathogenic variant for breast cancer risk.

8.
J Natl Cancer Inst ; 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31143935

RESUMO

BACKGROUND: DNA methylation plays a critical role in breast cancer development. Previous studies have identified DNA methylation marks in white blood cells as promising biomarkers for breast cancer. However, these studies were limited by low statistical power and potential biases. Utilizing a new methodology, we investigated DNA methylation marks for their associations with breast cancer risk. METHODS: Statistical models were built to predict levels of DNA methylation marks using genetic data and DNA methylation data from HumanMethylation450 BeadChip from the Framingham Heart Study (N=1,595). The prediction models were validated using data from the Women's Health Initiative (N=883). We applied these models to genome-wide association study (GWAS) data of 122,977 breast cancer cases and 105,974 controls to evaluate if the genetically predicted DNA methylation levels at CpGs are associated with breast cancer risk. All statistical tests were two-sided. RESULTS: Of the 62,938 CpG sites (CpGs) investigated, statistically significant associations with breast cancer risk were observed for 450 CpGs at a Bonferroni-corrected threshold of P<7.94 × 10-7, including 45 CpGs residing in 18 genomic regions which have not previously been associated with breast cancer risk. Of the remaining 405 CpGs located within 500 kilobase flaking regions of 70 GWAS-identified breast cancer risk variants, the associations for 11 CpGs were independent of GWAS-identified variants. Integrative analyses of genetic, DNA methylation and gene expression data found that 38 CpGs may affect breast cancer risk through regulating expression of 21 genes. CONCLUSION: Our new methodology can identify novel DNA methylation biomarkers for breast cancer risk and can be applied to other diseases.

9.
Cancer Res ; 79(13): 3192-3204, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101764

RESUMO

Genome-wide association study-identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 × 10-6, a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 × 10-6 after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. SIGNIFICANCE: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer.

10.
Hum Genet ; 138(4): 307-326, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820706

RESUMO

Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10- 4, replication P = 0.01), and PYGL (discovery P = 2.3 × 10- 4, replication P = 6.7 × 10- 4). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC (P < 0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes in the previously reported 2q25 locus, CXCR1 and CXCR2, which are potential cancer therapeutic targets. These findings provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data in GWAS for discovery of, and biological insight into, risk loci.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
11.
Gastroenterology ; 156(5): 1455-1466, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30529582

RESUMO

BACKGROUND & AIMS: Genome-wide association studies (GWASs) have associated approximately 50 loci with risk of colorectal cancer (CRC)-nearly one third of these loci were initially associated with CRC in studies conducted in East Asian populations. We conducted a GWAS of East Asians to identify CRC risk loci and evaluate the generalizability of findings from GWASs of European populations to Asian populations. METHODS: We analyzed genetic data from 22,775 patients with CRC (cases) and 47,731 individuals without cancer (controls) from 14 studies in the Asia Colorectal Cancer Consortium. First, we performed a meta-analysis of 7 GWASs (10,625 cases and 34,595 controls) and identified 46,554 promising risk variants for replication by adding them to the Multi-Ethnic Global Array (MEGA) for genotype analysis in 6445 cases and 7175 controls. These data were analyzed, along with data from an additional 5705 cases and 5961 controls genotyped using the OncoArray. We also obtained data from 57,976 cases and 67,242 controls of European descent. Variants at identified risk loci were functionally annotated and evaluated in correlation with gene expression levels. RESULTS: A meta-analyses of all samples from people of Asian descent identified 13 loci and 1 new variant at a known locus (10q24.2) associated with risk of CRC at the genome-wide significance level of P < 5 × 10-8. We did not perform experiments to replicate these associations in additional individuals of Asian ancestry. However, the lead risk variant in 6 of these loci was also significantly associated with risk of CRC in European descendants. A strong association (44%-75% increase in risk per allele) was found for 2 low-frequency variants: rs201395236 at 1q44 (minor allele frequency, 1.34%) and rs77969132 at 12p11.21 (minor allele frequency, 1.53%). For 8 of the 13 associated loci, the variants with the highest levels of significant association were located inside or near the protein-coding genes L1TD1, EFCAB2, PPP1R21, SLCO2A1, HLA-G, NOTCH4, DENND5B, and GNAS. For other intergenic loci, we provided evidence for the possible involvement of the genes ALDH7A1, PRICKLE1, KLF5, WWOX, and GLP2R. We replicated findings for 41 of 52 previously reported risk loci. CONCLUSIONS: We showed that most of the risk loci previously associated with CRC risk in individuals of European descent were also associated with CRC risk in East Asians. Furthermore, we identified 13 loci significantly associated with risk for CRC in Asians. Many of these loci contained genes that regulate the immune response, Wnt signaling to ß-catenin, prostaglandin E2 catabolism, and cell pluripotency and proliferation. Further analyses of these genes and their variants is warranted, particularly for the 8 loci for which the lead CRC risk variants were not replicated in persons of European descent.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Ásia/epidemiologia , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/imunologia , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Medição de Risco , Fatores de Risco
12.
Cancer Res ; 78(18): 5419-5430, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30054336

RESUMO

Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10-6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10-7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10-3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419-30. ©2018 AACR.

13.
Nat Genet ; 50(7): 968-978, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29915430

RESUMO

The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10-6, including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.

14.
Reprod Sci ; : 1933719118776788, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848177

RESUMO

OBJECTIVE: To identify novel susceptibility genes for age at natural menopause (ANM). METHODS: Using transcription data generated in tissues from normal hypothalami (n = 73) and ovaries (n = 68) and high-density genotyping data provided by the Genotype-Tissue Expression (GTEx) database, we built 16 164 genetic models to predict gene expression across the transcriptome in these tissues. We used these models and summary statistics data from genome-wide association studies (GWAS) of ANM generated in 69 360 women of European ancestry to identify genes with their predicted expression related to ANM. RESULTS: We found the predicted expression of 34 genes to be significantly associated with ANM at a Bonferroni-corrected threshold of P < 3.09 ×10-6. These include 4 genes located more than 1 Mb away from any previously GWAS-identified ANM-associated variants, 24 genes that reside in known GWAS-identified loci but have not been previously implicated, and 6 genes previously implicated as ANM-associated genes. CONCLUSION: Results from this transcriptome-wide association study, which integrated Expression quantitative trait loci (eQTL) data with summary statistics of GWAS of ANM, improves our understanding of the genetics and biology of female reproductive aging.

15.
Breast Cancer Res Treat ; 171(1): 199-207, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29748761

RESUMO

PURPOSE: The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression. METHODS: We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources. RESULTS: Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83-0.97), RASGRP1 (HR 0.89, 95% CI 0.82-0.97), and SOD2 (HR 0.80, 95% CI 0.66-0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81-0.97) and RASGRP1 (HR 0.87, 95% CI 0.81-0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06-1.22) and GSPT1 (HR 1.33, 95% CI 1.14-1.55) expression was associated with shorter DFS. CONCLUSIONS: We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.

16.
Am J Hum Genet ; 102(5): 890-903, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727689

RESUMO

Genome-wide association studies (GWASs) have identified more than 150 common genetic loci for breast cancer risk. However, the target genes and underlying mechanisms remain largely unknown. We conducted a cis-expression quantitative trait loci (cis-eQTL) analysis using normal or tumor breast transcriptome data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), The Cancer Genome Atlas (TCGA), and the Genotype-Tissue Expression (GTEx) project. We identified a total of 101 genes for 51 lead variants after combing the results of a meta-analysis of METABRIC and TCGA, and the results from GTEx at a Benjamini-Hochberg (BH)-adjusted p < 0.05. Using luciferase reporter assays in both estrogen-receptor positive (ER+) and negative (ER-) cell lines, we showed that alternative alleles of potential functional single-nucleotide polymorphisms (SNPs), rs11552449 (DCLRE1B), rs7257932 (SSBP4), rs3747479 (MRPS30), rs2236007 (PAX9), and rs73134739 (ATG10), could significantly change promoter activities of their target genes compared to reference alleles. Furthermore, we performed in vitro assays in breast cancer cell lines, and our results indicated that DCLRE1B, MRPS30, and ATG10 played a vital role in breast tumorigenesis via certain disruption of cell behaviors. Our findings revealed potential target genes for associations of genetic susceptibility risk loci and provided underlying mechanisms for a better understanding of the pathogenesis of breast cancer.

17.
Sci Rep ; 8(1): 5824, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643397

RESUMO

Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

18.
Hum Mol Genet ; 27(5): 853-859, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325031

RESUMO

Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

19.
Endocrinology ; 158(9): 2860-2872, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911167

RESUMO

Exposure to a high-fat (HF) diet in utero is associated with increased incidence of cardiovascular disease, diabetes, and metabolic syndrome later in life. However, the molecular basis of this enhanced susceptibility for metabolic disease is poorly understood. Gene expression microarray and genome-wide DNA methylation analyses of mouse liver revealed that exposure to a maternal HF milieu activated genes of immune response, inflammation, and hepatic dysfunction. DNA methylation analysis revealed 3360 differentially methylated loci, most of which (76%) were hypermethylated and distributed preferentially to hotspots on chromosomes 4 [atherosclerosis susceptibility quantitative trait loci (QTLs) 1] and 18 (insulin-dependent susceptibility QTLs 21). Interestingly, we found six differentially methylated genes within these hotspot QTLs associated with metabolic disease that maintain altered gene expression into adulthood (Arhgef19, Epha2, Zbtb17/Miz-1, Camta1 downregulated; and Ccdc11 and Txnl4a upregulated). Most of the hypermethylated genes in these hotspots are associated with cardiovascular system development and function. There were 140 differentially methylated genes that showed a 1.5-fold increase or decrease in messenger RNA levels. Many of these genes play a role in cell signaling pathways associated with metabolic disease. Of these, metalloproteinase 9, whose dysregulation plays a key role in diabetes, obesity, and cardiovascular disease, was upregulated 1.75-fold and hypermethylated in the gene body. In summary, exposure to a maternal HF diet causes DNA hypermethylation, which is associated with long-term gene expression changes in the liver of exposed offspring, potentially contributing to programmed development of metabolic disease later in life.


Assuntos
Metilação de DNA , Dieta Hiperlipídica , Regulação da Expressão Gênica , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Peso Corporal/genética , Feminino , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Gravidez , Caracteres Sexuais
20.
Mol Carcinog ; 56(1): 300-311, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128794

RESUMO

Allelic expression imbalance (AEI) has been applied to indicate potential function of genetic variants. Combining earlier results from global differential allele-specific expression analysis and genome wide association studies (GWASs), we select the single nuclear polymorphisms (SNPs) exhibiting AEI phenomenon located in breast cancer susceptibility chromosome regions, and evaluate their associations with breast cancer risk and survival. We examined the genotypes of 10 AEI SNPs in 1551 incident breast cancer cases and 1605 age-frequency matched controls from Guangzhou, China. In total, 1168 cases were followed up. MUC16 rs2591592 (AT/AA vs. TT) was associated with an increased risk of premenopausal breast cancer (OR [95%CI]: 1.30 [1.07, 1.57]); SLAMF1 rs1061217 (CT/TT vs. CC) decreased the risk of breast cancer among overweight women (OR [95%CI]: 0.74 [0.57, 0.96]) but increased the risk among normal-weight women (OR [95%CI]: 1.15 [1.01, 1.39]); ZNF331 rs8109631 (AG/AA vs. GG) and CHRAC1 rs10216653 (GC/GG vs. CC) were associated with progression free survival among breast cancer patients with negative ER/PR status and higher clinical stage (HRs [95%CIs]: 2.39 [1.14, 5.00], 1.85 [1.03, 3.32], and 0.49 [0.30, 0.80], respectively). ZNF331 rs8109631 and CHRAC1 rs10216653 were further found to represent several functional SNPs through bioinformatic analysis. In conclusion, our findings demonstrated suggestive associations of AEI polymorphisms with breast cancer risk (MUC16 rs2591592 and SLAMF1 rs1061217) and prognosis (ZNF331 rs8109631 and CHRAC1 rs10216653). © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Adulto , Alelos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA