Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
J Int Med Res ; 50(9): 3000605221122497, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36113014

RESUMO

Neurogenic tumors located in the larynx are extremely rare. Among them, schwannoma is a benign encapsulated tumor originating from Schwann cells, which form nerve fiber sheaths in the peripheral nervous system. We herein report a case of a schwannoma arising from a rare subsite of the larynx and review the literature on laryngeal schwannoma. The case involved a woman with a 1-month history of globus pharyngeus and dysphagia without dysphonia. Rigid laryngoscopy and magnetic resonance imaging showed a large submucosal bulge toward the medial wall of the right pyriform fossa, pushing the right false and true vocal cords and aryepiglottic fold inward. A transcervical approach was used to completely excise the tumor without incisional biopsy or preliminary tracheotomy. Histology confirmed a benign schwannoma originating from the right paraglottic space, which was extremely rare. During follow-up, no evidence of recurrence or a residual mass was found. The transcervical approach is a useful and less invasive treatment for laryngeal schwannoma located in the paraglottic space.


Assuntos
Neoplasias Laríngeas , Laringe , Neurilemoma , Feminino , Rouquidão/etiologia , Humanos , Neoplasias Laríngeas/patologia , Laringoscopia , Laringe/patologia , Neurilemoma/complicações , Neurilemoma/diagnóstico por imagem , Neurilemoma/cirurgia
2.
Front Pharmacol ; 13: 942996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147318

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options and a poor prognosis. TNBC exists widely reprogrammed lipid metabolism, and its metabolic-associated proteins and oncometabolites are promising as potential therapeutic targets. Dandelion (Taraxacum mongolicum) is a classical herbal medicine used to treat breast diseases based on traditional Chinese medicine theory and was reported to have antitumor effects and lipid regulatory capacities. Our previous study showed that dandelion extract was effective against TNBC. However, whether dandelion extract could regulate the lipid metabolisms of TNBC and exert its antitumor effects via interfering with lipids metabolism remained unclear. In this study, an integrated approach combined with network pharmacology and multi-omics techniques (including proteomics, metabolomics, and lipidomics) was performed to investigate the potential regulatory mechanisms of dandelion extract against TNBC. We first determined the antitumor effects of dandelion extract in vitro and in vivo. Then, network pharmacology analysis speculated the antitumor effects involving various metabolic processes, and the multi-omics results of the cells, tumor tissues, and plasma revealed the changes in the metabolites and metabolic-associated proteins after dandelion extract treatment. The alteration of glycerophospholipids and unsaturated fatty acids were the most remarkable types of metabolites. Therefore, the metabolism of glycerophospholipids and unsaturated fatty acids, and their corresponding proteins CHKA and FADS2, were considered the primary regulatory pathways and biomarkers of dandelion extract against TNBC. Subsequently, experimental validation showed that dandelion extract decreased CHKA expression, leading to the inhibition of the PI3K/AKT pathway and its downstream targets, SREBP and FADS2. Finally, the molecular docking simulation suggested that picrasinoside F and luteolin in dandelion extract had the most highly binding scores with CHKA, indicating they may be the potential CHKA inhibitors to regulate glycerophospholipids metabolisms of TNBC. In conclusion, we confirmed the antitumor effects of dandelion extract against TNBC cells in vitro and demonstrated that dandelion extract could interfere with glycerophospholipids and unsaturated fatty acids metabolism via downregulating the CHKA expression and inhibiting PI3K/AKT/SREBP/FADS2 axis.

3.
Int J Biol Sci ; 18(14): 5329-5344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147481

RESUMO

It is emerging that autophagy-related proteins regulate the adaptive response to DNA damage in maintaining genome stability at multiple pathways. Here, we discuss recent insights into how autophagy-related proteins participate in DNA damage repair processes, influence chromosomal instability, and regulate the cell cycle through autophagy-dependent and independent actions. There is increasing awareness of the importance of these pathways mediated by autophagy-related proteins to DNA damage response (DDR), and disturbances in these regulatory connections may be linked to genomic instability participated in various human diseases, such as cancer and aging.

4.
J Oncol ; 2022: 5388283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090899

RESUMO

Background: Transient receptor potential channel (TRP) is a superfamily of nonselective cation channels, which is a member of calcium ion channels with a vital role in different calcium ion signal transduction pathways. TRP channel expression is often changed in the tumor, although the role of TRP proteins in lung cancer is unknown. Methods: Molecular Signatures Database (MsigDB) provided the TRP gene set. Univariate Cox regression analysis was performed on The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) data collection set employing the coxph function of R package survival to find prognosis-related genes. The R package ConsumusClusterPlus was employed for doing the consistency cluster analysis of TCGA-LUAD samples according to the prognosis-related TRP gene. The R-package limma was utilized for investigating the differential expression of TRP subtypes. According to the differentially expressed genes between subtypes, the least absolute shrinkage and selection operator (LASSO) regression was employed to find the major genes and develop the risk model. CIBERPORT algorithm, R package maftools, gene set variation analysis (GSVA), and pRRophetic of R-package were employed for measuring the proportion of immune cells among subtypes, genomic mutation difference, pathway enrichment score, and drug sensitivity analysis. Results: A total of 15 TRP-related genes associated with the prognosis of lung adenocarcinoma were found. According to the expression value of 15 genes, lung adenocarcinoma can be sorted into two subcategories. The prognosis of cluster1 is considerably better in comparison with that of cluster2. There were 123 differentially expressed genes between C1 and C2 subtypes, including 6 up- and 117 downregulated genes. There were major variations in the tumor microenvironment between C1 and C2 subtypes. The proportion of CD8 T cells in the C1 subtype was considerably enhanced in comparison with that in the C2 subtype. We further discovered 123 differentially expressed genes among subtypes, and 8 key genes were obtained at the end. The risk score (RS) model developed by the 8-gene signature had good strength in the TCGA validation set, overall set, and Gene Expression Omnibus (GEO) external dataset. There were major variations in immune checkpoint gene expression, patient sensitivity to immunotherapeutic drugs, immune infiltration, and genomic mutations between high and low groups on the basis of RS. Conclusions: The risk model developed on the basis of TRP-related genes can help in predicting the prognosis of patients suffering from lung adenocarcinoma and guide immunotherapy.

5.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144712

RESUMO

An improved method to efficiently synthesize 2-OH thioaryl glycosides starting from corresponding per-protected glycals was developed, where 1,2-anhydro sugars were prepared by the oxidation of glycals with oxone, followed by reaction of crude crystalline 1,2-anhydro sugars with NaBH4 and aryl disulfides. This method has been further used in a one-pot reaction to synthesize glycosyl donors having both "armed" and "NGP (neighboring group participation)" effects.

6.
Front Cell Infect Microbiol ; 12: 937416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093183

RESUMO

Background: T-SPOT.TB (T-SPOT) is widely used for the detection of Mycobacterium tuberculosis infection by detecting interferon-gamma (IFN-γ) release in T lymphocytes. This assay is performed on peripheral blood mononuclear cells (PBMCs) separated by Ficoll density gradient centrifugation, which often contain some residual platelets. Here, we investigated the impact of platelets on T-SPOT assay and related mechanisms. Methods: The correlation between platelet count, platelet-to-lymphocyte ratio (PLR), and the IFN-γ secreting T cells (ISCs) in positive control wells of T-SPOT assay were retrospectively analyzed. T-SPOT assay was performed with un-treated PBMCs, platelets-removed PBMCs, and platelets-enriched PBMCs to confirm the impact of platelets on T-SPOT assay. The activation of platelets and their impact on IFN-γ production in T cells were detected by flow cytometry (FCM). Platelets and T cells were cultured in a mixed culture system and co-culture system respectively, followed by detection of the frequencies of IFN-γ-producing T cells and the levels of intracellular IFN-γ in T cells by FCM. Moreover, the effect of platelet releasate on the T-SPOT assay was evaluated. Results: The ISCs in positive control wells of the T-SPOT assay showed a significant decrease with the increase in platelet count. The PLR of the peripheral blood were negatively correlated with the ISCs in positive control wells of the T-SPOT assay. Removal or enrichment of platelets significantly increased or decreased the ISCs and the positive rate of T-SPOT. Inhibition of platelet activation significantly increased the ISCs of T-SPOT. The frequencies of IFN-γ-producing T cells in PBMCs and the levels of intracellular IFN-γ were significantly reduced by the addition of platelets, both in the mixed culture system and the co-culture system. Platelet releasate upon thrombin activation significantly decreased the ISCs of T-SPOT. Conclusions: Platelets correlate with negative T-SPOT results by inhibiting IFN-γ production in T cells via degranulation.


Assuntos
Interferon gama , Tuberculose , Humanos , Leucócitos Mononucleares , Estudos Retrospectivos , Linfócitos T , Tuberculose/diagnóstico
7.
Plant Sci ; 324: 111454, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36089197

RESUMO

Tubby-like protein (TLP) plays an important role in plant growth and development. In this investigation, the characteristics of 11 members in the SlTLP family were studied. SlTLP genes were classified into two subgroups, and the members containing the F-box domain were renamed SlTLFPs. Subcellular localization indicated that most of the SlTLPs were localized in the nucleus. Expression pattern analysis revealed that eight genes (SlTLFP1, 3, 5, 7-10, and SlTLP11) showed differential expression across various tissues, while SlTLFP2, 4, and 6 were widely expressed in all the organs tested. Most SlTLP genes were induced by biotic and abiotic stress treatments such as Botrytis cinerea, temperature, MeJA, and ABA. TLP proteins in tomato have no transcriptional activation activity, and most members with an F-box domain could interact with SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SlSkp1) or Cullin1 (Cul1) or both. Experiments on CRISPR edited SlTLFP8 showed that the N-terminal F-box domain was necessary for its function such as DNA ploidy and stomata size regulation. Our findings suggested that the F-box domain interacts with Skp1 and Cul1 to form the SCF complex, suggesting that SlTLFPs, at least SlTLFP8, function mainly through the F-box domain as an E3 ligase.

9.
Headache ; 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047917

RESUMO

OBJECTIVE: The purpose of this study was to identify the prevalence of severe headache or migraine and the association between dietary thiamine and riboflavin intake with headache history using a large, nationally representative population sample. BACKGROUND: Severe headache and migraine are common and disabling neurological disorders worldwide. Previous studies revealed that the B vitamin group, as an important nutrient of diet, can reduce migraine disability. METHODS: We performed a cross-sectional study of American adults surveyed in the National Health and Nutrition Examination Survey (NHANES) 1999-2004. Information on headache history was collected in the Miscellaneous Pain section of the Questionnaire Data. Dietary intake data of thiamine and riboflavin were obtained by 24-h dietary recall interview. RESULTS: The present study included 13,439 participants and indicated that 2745/13,439 (21.6%) adults (aged ≥20 years) experienced severe headache or migraine in the past 3 months. Dietary thiamine intake was significantly inversely associated with severe headache or migraine (odds ratio [OR] = 0.93, 95% confidence interval [CI] = 0.88-1.00, p = 0.046). In the stratified analysis, the relationship was maintained in the female group (OR = 0.90, 95% CI = 0.82-0.98, p = 0.022), and the sex interaction term was significant (p = 0.020). However, no significant interaction was found between the age groups (p = 0.352). For dietary riboflavin, no significant negative association was observed between dietary riboflavin intake and headache history (OR = 0.98, 95% CI = 0.94-1.02, p = 0.367). After stratifying by sex or age, there remained no significant relationship between dietary riboflavin and migraine. CONCLUSIONS: We found that high intake of thiamine was significantly associated with lower odds of migraine, especially in females. In the future, more clinical studies are needed to confirm our conclusions, and additional experiments are needed to explore the possible mechanisms of prevention and treatment for migraine.

10.
Cognition ; 229: 105249, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961161

RESUMO

Retaining social interactions in working memory (WM) for further social activities is vital for a successful social life. Researchers have noted a social chunking phenomenon in WM: WM involuntarily uses the social interaction cues embedded in the individual actions and chunks them as one unit. Our study is the first to examine whether the social chunking in WM is an automatic process, by asking whether social chunking of agent actions in WM is resource-demanding, a key hallmark of automaticity. We achieved this by probing whether retaining agent interactions in WM as a chunk required more attention than retaining actions without interaction. We employed a WM change-detection task with actions containing social interaction cues as memory stimuli, and required participants only memorizing individual actions. As domain-general attention and object-based attention are suggested playing a key role in retaining chunks in WM, a secondary task was inserted in the WM maintenance phase to consume these two types of attention. We reestablished the fact that the social chunking in WM required no voluntary control (Experiments 1 and 2). Critically, we demonstrated substantial evidence that social chunking in WM did not require extra domain-general attention (Experiment 1) or object-based attention (Experiment 2). These findings imply that the social chunking of agent actions in WM is not resource-demanding, supporting an automatic view of social chunking in WM.

11.
Front Microbiol ; 13: 936272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935236

RESUMO

Upon activation by the pathogen through T-cell receptors (TCRs), γδT cells suppress the pathogenic replication and thus play important roles against viral infections. Targeting SARS-CoV-2 via γδT cells provides alternative therapeutic strategies. However, little is known about the recognition of SARS-CoV-2 antigens by γδT cells. We discovered a specific Vγ9/δ2 CDR3 by analyzing γδT cells derived from the patients infected by SARS-CoV-2. Using a cell model exogenously expressing γδ-TCR established, we further screened the structural motifs within the CDR3 responsible for binding to γδ-TCR. Importantly, these sequences were mapped to NSP8, a non-structural protein in SARS-CoV-2. Our results suggest that NSP8 mediates the recognition by γδT cells and thus could serve as a potential target for vaccines.

12.
Front Cardiovasc Med ; 9: 939972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958412

RESUMO

Background: Myocardial infarction (MI) is one of the first cardiovascular diseases endangering human health. Inflammatory response plays a significant role in the pathophysiological process of MI. Messenger RNA (mRNA) has been proven to play a key role in cardiovascular diseases. Single-cell sequencing (SCS) technology is a new technology for high-throughput sequencing analysis of genome, transcriptome, and epigenome at the single-cell level, and it also plays an important role in the diagnosis and treatment of cardiovascular diseases. Machine learning algorithms have a wide scope of utilization in biomedicine and have demonstrated superior efficiency in clinical trials. However, few studies integrate these three methods to investigate the role of mRNA in MI. The aim of this study was to screen the expression of mRNA, investigate the function of mRNA, and provide an underlying scientific basis for the diagnosis of MI. Methods: In total, four RNA microarray datasets of MI, namely, GSE66360, GSE97320, GSE60993, and GSE48060, were downloaded from the Gene Expression Omnibus database. The function analysis was carried out by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis. At the same time, inflammation-related genes (IRGs) were acquired from the GeneCards database. Then, 52 co-DEGs were acquired from differentially expressed genes (DEGs) in differential analysis, IRGs, and genes from SCS, and they were used to construct a protein-protein interaction (PPI) network. Two machine learning algorithms, namely, (1) least absolute shrinkage and selection operator and (2) support vector machine recursive feature elimination, were used to filter the co-DEGs. Gene set enrichment analysis (GSEA) was performed to screen the hub-modulating signaling pathways associated with the hub genes. The results were validated in GSE97320, GSE60993, and GSE48060 datasets. The CIBERSORT algorithm was used to analyze 22 infiltrating immune cells in the MI and healthy control (CON) groups and to analyze the correlation between these immune cells. The Pymol software was used for molecular docking of hub DEGs and for potential treatment of MI drugs acquired from the COREMINE. Results: A total of 126 DEGs were in the MI and CON groups. After screening two machine learning algorithms and key co-DEGs from a PPI network, two hub DEGs (i.e., IL1B and TLR2) were obtained. The diagnostic efficiency of IL1B, TLR2, and IL1B + TLR2 showed good discrimination in the four cohorts. GSEA showed that KEGG enriched by DEGs were mainly related to inflammation-mediated signaling pathways, and GO biological processes enriched by DEGs were linked to biological effects of various inflammatory cells. Immune analysis indicated that IL1B and TLR2 were correlated with various immune cells. Dan shen, san qi, feng mi, yuan can e, can sha, san qi ye, san qi hua, and cha shu gen were identified as the potential traditional Chinese medicine (TCM) for the treatment of MI. 7-hydroxyflavone (HF) had stable combinations with IL1B and TLR2, respectively. Conclusion: This study identified two hub DEGs (IL1B and TLR2) and illustrated its potential role in the diagnosis of MI to enhance our knowledge of the underlying molecular mechanism. Infiltrating immune cells played an important role in MI. TCM, especially HF, was a potential drug for the treatment of MI.

13.
J Environ Manage ; 320: 115881, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952565

RESUMO

Landfill is the major waste disposal method of high-moisture coal gasification fine slag (GFS) which causes the pollution of soil and water and brings the waste of resources. GFS efficient dewatering is an urgent problem to be solved, which is beneficial to realize its resource utilization. In this paper, mechanical pressure and vacuum coupling energy fields are applied to carry out the dewatering processes of GFS. The pressure field provides strong power for water migration, which makes water leave the particle system, while the vacuum field provides traction for water removal from system. The fine slag produced from Coal-to-methanol (named JC) with larger size particles tends to form "bridging" frameworks among particles, which provides water occurrence space and increases the moisture migration resistance. The mechanical dewatering process has an energy advantage interval, when the sample moisture is reduced to a certain degree, the mechanical force field is mainly used for particle friction and breakage but not for moisture migration. Through dewatering process energy optimization, high moisture gasification fine slag can be removed about 15% water within 30s and energy consumption of efficient dewatering is 2.63 kJ/g which is much lower than that of drying. Efficient dewatering is benefit to the GFS recycling which reduces hazardous materials release to environment. The potential effects of high efficiency dewatering process on GFS resource utilization and the possible eco-design framework for products recycled from the waste GFS were proposed. The research results will provide theoretical guidance for the gasification fine slag efficient dewatering and is benefit to the environment.


Assuntos
Carvão Mineral , Eliminação de Resíduos , Reciclagem , Eliminação de Resíduos/métodos , Vácuo , Água
14.
Arch Biochem Biophys ; 729: 109381, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36027936

RESUMO

Various lncRNAs have been reported to be closely associated with cancer initiation and progression in breast cancer (BC), including LINC00520. However, the role and underlying mechanisms by which LINC00520 affects BC aggressiveness have not been fully delineated, and this study aimed to explore this issue. Through performing qRT-PCR analysis, we proved that LINC00520 was significantly upregulated in BC tissues and cells, compared with normal tissues and cells. Higher expression of LINC00520 was closely related to higher tumor grade, poor differentiation and shorter survival in BC patients. Next, the loss-of-function experiments evidenced that silencing LINC00520 suppressed BC cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, and inhibited tumorigenesis in vivo. Interestingly, we found that LINC00520 expression was positively regulated by METTL3-mediated N6-methyladenosine(m6A) modification in BC. Furthermore, we identified the tumor-suppressor miR-577 as the binding target of LINC00520 in BC. Mechanistically, LINC00520 elevated POSTN level via sponging miR-577, resulting in the activation of the downstream tumor-promoting ILK/Akt/mTOR pathway. Finally, the rescuing experiments evidenced that both POSTN knockdown and ILK/Akt/mTOR pathway inhibitor OSU-T315 abrogated the promoting effects of miR-577 ablation on the malignant phenotypes in BC. Collectively, this study firstly verified that LINC00520 acted as a ceRNA of miR-577 to advance BC aggressiveness in a m6A-dependent manner, providing novel biomarkers for BC diagnosis and therapy.

15.
Org Biomol Chem ; 20(34): 6844-6853, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968914

RESUMO

A Cu-catalyzed oxidative dual arylation of active alkenes via the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.


Assuntos
Alcenos , Cobre/química , Imidazóis/química , Estresse Oxidativo , Quinolonas/síntese química , Alcenos/química , Catálise
16.
Eur Radiol ; 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001125

RESUMO

OBJECTIVES: To develop and validate a deep learning imaging signature (DLIS) for risk stratification in patients with multiforme (GBM), and to investigate the biological pathways and genetic alterations underlying the DLIS. METHODS: The DLIS was developed from multi-parametric MRI based on a training set (n = 600) and validated on an internal validation set (n = 164), an external test set 1 (n = 100), an external test set 2 (n = 161), and a public TCIA set (n = 88). A co-profiling framework based on a radiogenomics analysis dataset (n = 127) using multiscale high-dimensional data, including imaging, transcriptome, and genome, was established to uncover the biological pathways and genetic alterations underpinning the DLIS. RESULTS: The DLIS was associated with survival (log-rank p < 0.001) and was an independent predictor (p < 0.001). The integrated nomogram incorporating the DLIS achieved improved C indices than the clinicomolecular nomogram (net reclassification improvement 0.39, p < 0.001). DLIS significantly correlated with core pathways of GBM (apoptosis and cell cycle-related P53 and RB pathways, and cell proliferation-related RTK pathway), as well as key genetic alterations (del_CDNK2A). The prognostic value of DLIS-correlated genes was externally confirmed on TCGA/CGGA sets (p < 0.01). CONCLUSIONS: Our study offers a biologically interpretable deep learning predictor of survival outcomes in patients with GBM, which is crucial for better understanding GBM patient's prognosis and guiding individualized treatment. KEY POINTS: • MRI-based deep learning imaging signature (DLIS) stratifies GBM into risk groups with distinct molecular characteristics. • DLIS is associated with P53, RB, and RTK pathways and del_CDNK2A mutation. • The prognostic value of DLIS-correlated pathway genes is externally demonstrated.

17.
Environ Sci Technol ; 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944011

RESUMO

Methane emissions from worldwide increasing abandoned coal mines have posed multiple challenges of global warming, energy waste, and explosion risk. This study first profiles the dynamic patterns of coal mine methane emissions in different recovery technologies, methane extraction with drainage (MEWD, mine-water concurrently extracted and treated) and direct methane extraction (DME, noncontrol on mine-water), in two abandoned mines from Ningxia and Inner Mongolia as China's leading coal provinces. Then, we conducted a techno-economic analysis and life-cycle assessment to quantify their comprehensive benefits. The key findings are as follows: (1) MEWD can long recover methane, although the economic profits decrease with declining methane extraction volume. DME can only work for ∼5 years, after which the mine is flooded, where methane is sealed underground and not recoverable. (2) MEWD drains and further treats the mine-water with an additional 29.4-35.9 million CNY cost compared with DME, while MEWD can achieve greater life-cycle environmental benefits with more cumulative methane recovery, whose CO2-eq (GWP-100) and SO2 reductions are 64.4 and 53.4% higher than those of DME. (3) MEWD is more promising for large-scale implementation, where feed-in tariffs and carbon market measures can improve the economics for sustainable management of incremental abandoned mine methane.

18.
J Colloid Interface Sci ; 628(Pt A): 397-408, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35932676

RESUMO

The application of graphite carbon nitride photocatalysts is hampered by their low specific surface areas, few active sites, and low photogenerated electron-hole transfer rates. Here, we report a green and controllable strategy for synthesizing kelp-like carbon nitride nanosheets through self-assembled materials prepared from melamine and trithiocyanuric acid using sonochemistry. The prepared carbon nitride nanosheets showed superior and long-lasting photocatalytic activity in hydrogen evolution and the degradation of tetracycline hydrochloride. The significantly enhanced photocatalytic performance of carbon nitride nanosheets is attributed to the curled porous nanosheet structure and the appropriate amount of O-doping. This work provides a new design strategy for preparing shape-controlled carbon nitride catalysts via a green, fast, sonochemically mediated self-assembly approach.

19.
Front Immunol ; 13: 954744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032067

RESUMO

Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.


Assuntos
Regulação da Expressão Gênica , Neoplasias , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica , Humanos , Inflamação
20.
Artigo em Inglês | MEDLINE | ID: mdl-35802547

RESUMO

Traditional neural network compression (NNC) methods decrease the model size and floating-point operations (FLOPs) in the manner of screening out unimportant weight parameters; however, the intrinsic sparsity characteristics have not been fully exploited. In this article, from the perspective of signal processing and analysis for network parameters, we propose to use a compressive sensing (CS)-based method, namely NNCS, for performance improvements. Our proposed NNCS is inspired by the discovery that sparsity levels of weight parameters in the transform domain are greater than those in the original domain. First, to achieve sparse representations for parameters in the transform domain during training, we incorporate a constrained CS model into loss function. Second, the proposed effective training process consists of two steps, where the first step trains raw weight parameters and induces and reconstructs their sparse representations and the second step trains transform coefficients to improve network performances. Finally, we transform the entire neural network into another new domain-based representation, and a sparser parameter distribution can be obtained to facilitate inference acceleration. Experimental results demonstrate that NNCS can significantly outperform the other existing state-of-the-art methods in terms of parameter reductions and FLOPs. With VGGNet on CIFAR-10, we decrease 94.8% parameters and achieve a 76.8% reduction of FLOPs, with 0.13% drop in Top-1 accuracy. With ResNet-50 on ImageNet, we decrease 75.6% parameters and achieve a 78.9% reduction of FLOPs, with 1.24% drop in Top-1 accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...