Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Transfusion ; 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625169

RESUMO

Among blood components, platelets (PLTs) present the toughest logistic challenges in transfusion due to limited availability, difficult portability and storage, high contamination risks, and very short shelf life (approx. 5 days). Robust research efforts are being directed to develop biologic PLTs in vitro as well as design biosynthetic and artificial PLT technologies that can potentially resolve these challenges to allow adequate availability and timely transfusion to improve survival in trauma.

3.
Shock ; 52(1S Suppl 1): 70-83, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31513123

RESUMO

In blood, the primary role of red blood cells (RBCs) is to transport oxygen via highly regulated mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two α- and two ß-polypeptide chains, each containing an iron-containing heme group capable of binding one oxygen molecule. In military as well as civilian traumatic exsanguinating hemorrhage, rapid loss of RBCs can lead to suboptimal tissue oxygenation and subsequent morbidity and mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. However, blood products including RBCs present issues of limited availability and portability, need for type matching, pathogenic contamination risks, and short shelf-life, causing substantial logistical barriers to their prehospital use in austere battlefield and remote civilian conditions. While robust research is being directed to resolve these issues, parallel research efforts have emerged toward bioengineering of semisynthetic and synthetic surrogates of RBCs, using various cross-linked, polymeric, and encapsulated forms of Hb. These Hb-based oxygen carriers (HBOCs) can potentially provide therapeutic oxygenation when blood or RBCs are not available. Several of these HBOCs have undergone rigorous preclinical and clinical evaluation, but have not yet received clinical approval in the USA for human use. While these designs are being optimized for clinical translations, several new HBOC designs and molecules have been reported in recent years, with unique properties. The current article will provide a comprehensive review of such HBOC designs, including current state-of-the-art and novel molecules in development, along with a critical discussion of successes and challenges in this field.

4.
J Thromb Haemost ; 17(9): 1414-1416, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301115
5.
Haemophilia ; 25(5): 885-892, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31282024

RESUMO

BACKGROUND: Reliable monitoring of coagulation factor replacement therapy in patients with severe haemophilia, especially those with inhibitors, is an unmet clinical need. While useful, global assays, eg thromboelastography (TEG), rotational thromboelastometry (ROTEM) and thrombin generation assay (TGA), are cumbersome to use and not widely available. OBJECTIVE: To assess the utility of a novel, point-of-care, dielectric microsensor - ClotChip - to monitor coagulation factor replacement therapy in patients with haemophilia A, with and without inhibitors. METHODS: The ClotChip Tpeak parameter was assessed using whole-blood samples from children with severe haemophilia A, with (n = 6) and without (n = 12) inhibitors, collected pre- and postcoagulation factor replacement therapy. ROTEM, TGA and chromogenic FVIII assays were also performed. Healthy children (n = 50) served as controls. RESULTS: ClotChip Tpeak values exhibited a significant decrease for samples collected postcoagulation factor replacement therapy as compared to baseline (pretherapy) samples in patients with and without inhibitors. A difference in Tpeak values was also noted at baseline among severe haemophilia A patients with inhibitors as compared to those without inhibitors. ClotChip Tpeak parameter exhibited a very strong correlation with clotting time (CT) of ROTEM, endogenous thrombin potential (ETP) and peak thrombin of TGA, and FVIII clotting activity. CONCLUSIONS: ClotChip is sensitive to coagulation factor replacement therapy in patients with severe haemophilia A, with and without inhibitors. ClotChip Tpeak values correlate very well with ROTEM, TGA and FVIII assays, opening up possibilities for its use in personalized coagulation factor replacement therapy in haemophilia.

6.
Semin Thromb Hemost ; 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200393

RESUMO

The term "nanotechnology" was coined by Norio Taniguchi in the 1970s to describe the manipulation of materials at the nano (10-9) scale, and the term "nanomedicine" was put forward by Eric Drexler and Robert Freitas Jr. in the 1990s to signify the application of nanotechnology in medicine. Nanomedicine encompasses a variety of systems including nanoparticles, nanofibers, surface nano-patterning, nanoporous matrices, and nanoscale coatings. Of these, nanoparticle-based applications in drug formulations and delivery have emerged as the most utilized nanomedicine system. This review aims to present a comprehensive assessment of nanomedicine approaches in vascular diseases, emphasizing particle designs, therapeutic effects, and current state-of-the-art. The expected advantages of utilizing nanoparticles for drug delivery stem from the particle's ability to (1) protect the drug from plasma-induced deactivation; (2) optimize drug pharmacokinetics and biodistribution; (3) enhance drug delivery to the disease site via passive and active mechanisms; (4) modulate drug release mechanisms via diffusion, degradation, and other unique stimuli-triggered processes; and (5) biodegrade or get eliminated safely from the body. Several nanoparticle systems encapsulating a variety of payloads have shown these advantages in vascular drug delivery applications in preclinical evaluation. At the same time, new challenges have emerged regarding discrepancy between expected and actual fate of nanoparticles in vivo, manufacturing barriers of complex nanoparticle designs, and issues of toxicity and immune response, which have limited successful clinical translation of vascular nanomedicine systems. In this context, this review will discuss challenges and opportunities to advance the field of vascular nanomedicine.

7.
J Thromb Haemost ; 17(10): 1632-1644, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31220416

RESUMO

BACKGROUND: Trauma-associated hemorrhage and coagulopathy remain leading causes of mortality. Such coagulopathy often leads to a hyperfibrinolytic phenotype where hemostatic clots become unstable because of upregulated tissue plasminogen activator (tPA) activity. Tranexamic acid (TXA), a synthetic inhibitor of tPA, has emerged as a promising drug to mitigate fibrinolysis. TXA is US Food and Drug Administration-approved for treating heavy menstrual and postpartum bleeding, and has shown promise in trauma treatment. However, emerging reports also implicate TXA for off-target systemic coagulopathy, thromboembolic complications, and neuropathy. OBJECTIVE: We hypothesized that targeted delivery of TXA to traumatic injury site can enable its clot-stabilizing action site-selectively, to improve hemostasis and survival while avoiding off-target effects. To test this, we used liposomes as a model delivery vehicle, decorated their surface with a fibrinogen-mimetic peptide for anchorage to active platelets within trauma-associated clots, and encapsulated TXA within them. METHODS: The TXA-loaded trauma-targeted nanovesicles (T-tNVs) were evaluated in vitro in rat blood, and then in vivo in a liver trauma model in rats. TXA-loaded control (untargeted) nanovesicles (TNVs), free TXA, or saline were studied as comparison groups. RESULTS: Our studies show that in vitro, the T-tNVs could resist lysis in tPA-spiked rat blood. In vivo, T-tNVs maintained systemic safety, significantly reduced blood loss and improved survival in the rat liver hemorrhage model. Postmortem evaluation of excised tissue from euthanized rats confirmed systemic safety and trauma-targeted activity of the T-tNVs. CONCLUSION: Overall, the studies establish the potential of targeted TXA delivery for safe injury site-selective enhancement and stabilization of hemostatic clots to improve survival in trauma.

9.
Nanoscale ; 10(32): 15350-15364, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30080212

RESUMO

Intravascular drug delivery technologies majorly utilize spherical nanoparticles as carrier vehicles. Their targets are often at the blood vessel wall or in the tissue beyond the wall, such that vehicle localization towards the wall (margination) becomes a pre-requisite for their function. To this end, some studies have indicated that under flow environment, micro-particles have a higher propensity than nano-particles to marginate to the wall. Also, non-spherical particles theoretically have a higher area of surface-adhesive interactions than spherical particles. However, detailed systematic studies that integrate various particle size and shape parameters across nano-to-micro scale to explore their wall-localization behavior in RBC-rich blood flow, have not been reported. We address this gap by carrying out computational and experimental studies utilizing particles of four distinct shapes (spherical, oblate, prolate, rod) spanning nano- to-micro scale sizes. Computational studies were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package, with Dissipative Particle Dynamics (DPD). For experimental studies, model particles were made from neutrally buoyant fluorescent polystyrene spheres, that were thermo-stretched into non-spherical shapes and all particles were surface-coated with biotin. Using microfluidic setup, the biotin-coated particles were flowed over avidin-coated surfaces in absence versus presence of RBCs, and particle adhesion and retention at the surface was assessed by inverted fluorescence microscopy. Our computational and experimental studies provide a simultaneous analysis of different particle sizes and shapes for their retention in blood flow and indicate that in presence of RBCs, micro-scale non-spherical particles undergo enhanced 'margination + adhesion' compared to nano-scale spherical particles, resulting in their higher binding. These results provide important insight regarding improved design of vascularly targeted drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Tamanho da Partícula , Hemodinâmica , Microfluídica
10.
JAMA ; 319(20): 2137, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29800172
11.
J Trauma Acute Care Surg ; 84(6): 917-923, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29538234

RESUMO

BACKGROUND: Clinical resuscitative treatment of traumatic hemorrhage involves transfusion of RBC, platelets and plasma in controlled ratios. However, use of such blood components, especially platelets, present many challenges including availability, portability, contamination risks, and short shelf-life, which limit the use of platelet transfusions outside of large trauma centers such as remote civilian hospitals and austere prehospital settings. This has prompted significant research in platelet substitutes that may resolve the above issues while providing platelet-mimetic hemostatic action. In this framework, we have developed a synthetic platelet surrogate, SynthoPlate, by integrative decoration of platelet function mimetic peptides on a biocompatible lipid nanovesicle platform. We have previously demonstrated hemostatic capability of SynthoPlate in correcting tail-bleeding time in thrombocytopenic mice. Building on this, we hypothesized that SynthoPlate transfusion would decrease bleeding in a murine model of acute hemorrhagic shock. METHODS: A validated model of uncontrolled intraperitoneal hemorrhage, via liver laceration was used to induce hemorrhagic shock in mice. SynthoPlate, control (unmodified) particles, and normal saline were administered as pretreatment and recue infusions to mice undergoing liver laceration and evaluated for hemostatic benefit by determining differences in blood loss and monitoring real-time hemodynamic data. RESULTS: Pretreatment SynthoPlate transfusion resulted in significant reduction of blood loss following hemorrhage, compared with control particles or normal saline treatment (0.86 ± 0.16 g control particles [CP] vs. 0.84 ± 0.13 g normal saline [NS] vs. 0.68 ± 0.09 g SynthoPlate, p < 0.005). SynthoPlate transfused mice demonstrated improved hemodynamics taking significantly longer to develop post-injury hypotension (168.3 ± 106.6 seconds CP vs. 137 ± 58 seconds NS vs. 546.7 ± 329.8 seconds SynthoPlate, p < 0.05). SynthoPlate infusion following liver laceration, that is, rescue transfusion, also resulted in a significant decrease in blood loss (0.89 ± 0.17 g CP vs. 0.92 ± 0.19 g NS vs. 0.69 ± 0.18 g SynthoPlate, p < 0.05). CONCLUSION: Transfusion of SynthoPlate particles reduces blood loss in a murine model of liver injury, and SynthoPlates may represent a viable transfusion product for the mitigation of blood loss in acute, severe hemorrhagic shock.


Assuntos
Plaquetas/citologia , Substitutos Sanguíneos/farmacologia , Hemostasia/fisiologia , Fígado/lesões , Choque Hemorrágico/terapia , Animais , Modelos Animais de Doenças , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transfusão de Plaquetas
12.
Sci Rep ; 8(1): 3118, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449604

RESUMO

Traumatic non-compressible hemorrhage is a leading cause of civilian and military mortality and its treatment requires massive transfusion of blood components, especially platelets. However, in austere civilian and battlefield locations, access to platelets is highly challenging due to limited supply and portability, high risk of bacterial contamination and short shelf-life. To resolve this, we have developed an I.V.-administrable 'synthetic platelet' nanoconstruct (SynthoPlate), that can mimic and amplify body's natural hemostatic mechanisms specifically at the bleeding site while maintaining systemic safety. Previously we have reported the detailed biochemical and hemostatic characterization of SynthoPlate in a non-trauma tail-bleeding model in mice. Building on this, here we sought to evaluate the hemostatic ability of SynthoPlate in emergency administration within the 'golden hour' following traumatic hemorrhagic injury in the femoral artery, in a pig model. We first characterized the storage stability and post-sterilization biofunctionality of SynthoPlate in vitro. The nanoconstructs were then I.V.-administered to pigs and their systemic safety and biodistribution were characterized. Subsequently we demonstrated that, following femoral artery injury, bolus administration of SynthoPlate could reduce blood loss, stabilize blood pressure and significantly improve survival. Our results indicate substantial promise of SynthoPlate as a viable platelet surrogate for emergency management of traumatic bleeding.


Assuntos
Plaquetas/citologia , Hemorragia/terapia , Transfusão de Plaquetas/métodos , Células 3T3 , Animais , Transfusão de Sangue , Artéria Femoral/lesões , Hemorragia/etiologia , Hemorragia/metabolismo , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Humanos , Camundongos , Polietilenoglicóis/farmacologia , Suínos , Distribuição Tecidual
14.
J Clin Invest ; 128(3): 944-959, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376892

RESUMO

Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMß2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.


Assuntos
Fator XII/metabolismo , Neutrófilos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Cicatrização , Animais , Cálcio/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Armadilhas Extracelulares , Feminino , Humanos , Inflamação , Leucócitos/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
15.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164804

RESUMO

Bleeding complications arising from trauma, surgery, and as congenital, disease-associated, or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Therefore, stoppage of bleeding (hemostasis) is of paramount clinical significance in prophylactic, surgical, and emergency scenarios. For externally accessible injuries, a variety of natural and synthetic biomaterials have undergone robust research, leading to hemostatic technologies including glues, bandages, tamponades, tourniquets, dressings, and procoagulant powders. In contrast, treatment of internal noncompressible hemorrhage still heavily depends on transfusion of whole blood or blood's hemostatic components (platelets, fibrinogen, and coagulation factors). Transfusion of platelets poses significant challenges of limited availability, high cost, contamination risks, short shelf-life, low portability, performance variability, and immunological side effects, while use of fibrinogen or coagulation factors provides only partial mechanisms for hemostasis. With such considerations, significant interdisciplinary research endeavors have been focused on developing materials and technologies that can be manufactured conveniently, sterilized to minimize contamination and enhance shelf-life, and administered intravenously to mimic, leverage, and amplify physiological hemostatic mechanisms. Here, a comprehensive review regarding the various topical, intracavitary, and intravenous hemostatic technologies in terms of materials, mechanisms, and state-of-art is provided, and challenges and opportunities to help advancement of the field are discussed.


Assuntos
Materiais Biocompatíveis/química , Bandagens , Hemorragia , Hemostasia , Hemostáticos , Humanos
16.
Shock ; 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28968286

RESUMO

In blood, the primary role of RBCs is to transport oxygen via highly regulated mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two α- and two ß-polypeptide chains, each containing an iron-containing heme group capable of binding one oxygen molecule. In military as well as civilian traumatic exsanguinating hemorrhage, rapid loss of RBCs can lead to sub-optimal tissue oxygenation and subsequent morbidity and mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. However, blood products including RBCs present issues of limited availability and portability, need for type matching, pathogenic contamination risks, and short shelf-life, causing substantial logistical barriers to their pre-hospital use in austere battlefield and remote civilian conditions. While robust research is being directed to resolve these issues, parallel research efforts have emerged towards bioengineering of semi-synthetic and synthetic surrogates of RBCs, using various cross-linked, polymeric and encapsulated forms of Hb. These Hb-based oxygen carriers (HBOCs) can potentially provide therapeutic oxygenation when blood or RBC are not available. Several of these HBOCs have undergone rigorous pre-clinical and clinical evaluation, but have not yet received clinical approval in the USA for human use. While these designs are being optimized for clinical translations, several new HBOC designs and molecules have been reported in recent years, with unique properties. The current article will provide a comprehensive review of such HBOC designs, including current state-of-the-art and novel molecules in development, along with a critical discussion of successes and challenges in this field.

17.
IEEE Trans Biomed Circuits Syst ; 11(6): 1459-1469, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28920906

RESUMO

This paper describes the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy of human whole blood during coagulation. The sensor, termed ClotChip, employs a three-dimensional, parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Interfaced with an impedance analyzer, the ClotChip measures the complex relative dielectric permittivity, ϵr , of human whole blood in the frequency range of 40 Hz to 100 MHz. The temporal variation in the real part of the blood dielectric permittivity at 1 MHz features a time to reach a permittivity peak, , as well as a maximum change in permittivity after the peak, , as two distinct parameters of ClotChip readout. The ClotChip performance was benchmarked against rotational thromboelastometry (ROTEM) to evaluate the clinical utility of its readout parameters in capturing the clotting dynamics arising from coagulation factors and platelet activity. exhibited a very strong positive correlation ( r = 0.99, p < 0.0001) with the ROTEM clotting time parameter, whereas exhibited a strong positive correlation (r = 0.85,  p < 0.001) with the ROTEM maximum clot firmness parameter. This paper demonstrates the ClotChip potential as a point-of-care platform to assess the complete hemostatic process using <10 µL of human whole blood.


Assuntos
Técnicas Biossensoriais/métodos , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Feminino , Humanos , Masculino
18.
J Vis Exp ; (123)2017 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-28570538

RESUMO

Uncontrolled hemorrhage is an important cause of preventable deaths among trauma patients. We have developed a murine model of uncontrolled hemorrhage via a liver laceration that results in consistent blood loss, hemodynamic alterations, and survival. Mice undergo a standardized resection of the left-middle lobe of the liver. They are allowed to bleed without mechanical intervention. Hemostatic agents can be administered as pre-treatment or rescue therapy depending on the interest of the investigator. During the time of hemorrhage, real-time hemodynamic monitoring via a left femoral arterial line is performed. Mice are then sacrificed, blood loss is quantified, blood is collected for further analysis, and organs are harvested for analysis of injury. Experimental design is described to allow for simultaneous testing of multiple animals. Liver hemorrhage as a model of uncontrolled hemorrhage exists in the literature, primarily in rat and porcine models. Some of these models utilize hemodynamic monitoring or quantify blood loss but lack consistency. The present model incorporates quantification of blood loss, real-time hemodynamic monitoring in a murine model that offers the advantage of using transgenic lines and a high-throughput mechanism to further investigate the pathophysiologic mechanisms in uncontrolled hemorrhage.


Assuntos
Monitorização Hemodinâmica , Fígado/lesões , Choque Hemorrágico/etiologia , Animais , Modelos Animais de Doenças , Hemostáticos/uso terapêutico , Lacerações , Camundongos , Choque Hemorrágico/fisiopatologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-28296287

RESUMO

Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1464. doi: 10.1002/wnan.1464 For further resources related to this article, please visit the WIREs website.


Assuntos
Biomimética , Substitutos Sanguíneos/farmacologia , Nanomedicina/métodos , Animais , Fenômenos Biomecânicos , Sistemas de Liberação de Medicamentos , Humanos
20.
Biomaterials ; 128: 94-108, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314136

RESUMO

Intravascular administration of plasminogen activators is a clinically important thrombolytic strategy to treat occlusive vascular conditions. A major issue with this strategy is the systemic off-target drug action, which affects hemostatic capabilities and causes substantial hemorrhagic risks. This issue can be potentially resolved by designing technologies that allow thrombus-targeted delivery and site-specific action of thrombolytic drugs. To this end, leveraging a liposomal platform, we have developed platelet microparticle (PMP)-inspired nanovesicles (PMINs), that can protect encapsulated thrombolytic drugs in circulation to prevent off-target uptake and action, anchor actively onto thrombus via PMP-relevant molecular mechanisms and allow drug release via thrombus-relevant enzymatic trigger. Specifically, the PMINs can anchor onto thrombus via heteromultivalent ligand-mediated binding to active platelet integrin GPIIb-IIIa and P-selectin, and release the thrombolytic payload due to vesicle destabilization triggered by clot-relevant enzyme phospholipase-A2. Here we report on the evaluation of clot-targeting efficacy, lipase-triggered drug release and resultant thrombolytic capability of the PMINs in vitro, and subsequently demonstrate that intravenous delivery of thrombolytic-loaded PMINs can render targeted fibrinolysis without affecting systemic hemostasis, in vivo, in a carotid artery thrombosis model in mice. Our studies establish significant promise of the PMIN technology for safe and site-targeted nanomedicine therapies in the vascular compartment.


Assuntos
Plaquetas/citologia , Micropartículas Derivadas de Células/metabolismo , Fibrinólise , Nanomedicina/métodos , Trombose/terapia , Animais , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Microscopia Intravital , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Fosfolipases A2/metabolismo , Solubilidade , Trombose/tratamento farmacológico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA