Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Am J Primatol ; : e23255, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792947

RESUMO

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results while finding additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.

2.
Cells ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802698

RESUMO

Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33677560

RESUMO

BACKGROUND: Imipenem/relebactam is a novel carbapenem/ß-lactamase inhibitor combination, developed to act against carbapenemase-producing Enterobacterales (CPE). OBJECTIVES: To assess the in vitro activity of imipenem/relebactam against a Spanish nationwide collection of CPE by testing the susceptibility of these isolates to 16 widely used antimicrobials and to determine the underlying ß-lactam resistance mechanisms involved and the molecular epidemiology of carbapenemases in Spain. MATERIALS AND METHODS: Clinical CPE isolates (n = 401) collected for 2 months from 24 hospitals in Spain were tested. MIC50, MIC90 and susceptibility/resistance rates were interpreted in accordance with the EUCAST guidelines. ß-Lactam resistance mechanisms and molecular epidemiology were characterized by WGS. RESULTS: For all isolates, high rates of susceptibility to colistin (86.5%; MIC50/90 = 0.12/8 mg/L), imipenem/relebactam (85.8%; MIC50/90 = 0.5/4 mg/L) and ceftazidime/avibactam (83.8%, MIC50/90 = 1/≥256 mg/L) were observed. The subgroups of isolates producing OXA-48-like (n = 305, 75.1%) and KPC-like enzymes (n = 44, 10.8%) were highly susceptible to ceftazidime/avibactam (97.7%, MIC50/90 = 1/2 mg/L) and imipenem/relebactam (100.0%, MIC50/90 = ≤0.25/1 mg/L), respectively.The most widely disseminated high-risk clones of carbapenemase-producing Klebsiella pneumoniae across Spain were found to be ST11, ST147, ST392 and ST15 (mostly associated with OXA-48) and ST258/512 (in all cases producing KPC). CONCLUSIONS: Imipenem/relebactam, colistin and ceftazidime/avibactam were the most active antimicrobials against all CPEs. Imipenem/relebactam is a valuable addition to the antimicrobial arsenal used in the fight against CPE, particularly against KPC-producing isolates, which in all cases were susceptible to this combination.

4.
Sci Rep ; 10(1): 21905, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318526

RESUMO

The Senegalese sole (Solea senegalensis) is an economically important flatfish species. In this study, a genome draft was analyzed to identify microsatellite (SSR) markers for whole-genome genotyping. A subset of 224 contigs containing SSRs were preselected and validated by using a de novo female hybrid assembly. Overall, the SSR density in the genome was 886.7 markers per megabase of genomic sequences and the dinucleotide motif was the most abundant (52.4%). In silico comparison identified a set of 108 SSRs (with di-, tetra- or pentanucleotide motifs) widely distributed in the genome and suitable for primer design. A total of 106 markers were structured in thirteen multiplex PCR assays (with up to 10-plex) and the amplification conditions were optimized with a high-quality score. Main genetic diversity statistics and genotyping reliability were assessed. A subset of 40 high polymorphic markers were selected to optimize four supermultiplex PCRs (with up to 11-plex) for pedigree analysis. Theoretical exclusion probabilities and real parentage allocation tests using parent-offspring information confirmed their robustness and effectiveness for parental assignment. These new SSR markers were combined with previously published SSRs (in total 229 makers) to construct a new and improved integrated genetic map containing 21 linkage groups that matched with the expected number of chromosomes. Synteny analysis with respect to C. semilaevis provided new clues on chromosome evolution in flatfish and the formation of metacentric and submetacentric chromosomes in Senegalese sole.

5.
Genome Biol ; 21(1): 275, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168033

RESUMO

BACKGROUND: The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear. RESULTS: Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom. CONCLUSIONS: Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.

6.
Clin Cancer Res ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998960

RESUMO

PURPOSE: Molecular subtype classifications in glioblastoma may detect therapy sensitivities. IHC would potentially allow the identification of molecular subtypes in routine clinical practice. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tumor samples of 124 uniformly treated, newly diagnosed patients with glioblastoma were submitted to RNA sequencing, IHC, and immune-phenotyping to identify differences in molecular subtypes associated with treatment sensitivities. RESULTS: We detected high molecular and IHC overlapping of the The Cancer Genome Atlas (TCGA) mesenchymal subtype with instrinsic glioma subtypes (IGS) cluster 23 and of the TCGA classical subtype with IGS cluster 18. IHC patterns, gene fusion profiles, and immune-phenotypes varied across subtypes. IHC revealed that the TCGA classical subtype was identified by high expression of EGFR and low expression of PTEN, while the mesenchymal subtype was identified by low expression of SOX2 and high expression of two antibodies, SHC1 and TCIRG1, selected on the basis of RNA differential transcriptomic expression. The proneural subtype was identified by frequent positive IDH1 expression and high Olig2 and Ki67 expression. Immune-phenotyping showed that mesenchymal and IGS 23 tumors exhibited a higher positive effector cell score, a higher negative suppressor cell score, and lower levels of immune checkpoint molecules. The cell-type deconvolution analysis revealed that these tumors are highly enriched in M2 macrophages, resting memory CD4+ T cells, and activated dendritic cells, indicating that they may be ideal candidates for immunotherapy, especially with anti-M2 and/or dendritic cell vaccination. CONCLUSIONS: There is a subset of tumors, frequently classified as mesenchymal or IGS cluster 23, that may be identified with IHC and could well be optimal candidates for immunotherapy.

7.
Nat Commun ; 11(1): 5040, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028839

RESUMO

Bringing together cancer genomes from different projects increases power and allows the investigation of pan-cancer, molecular mechanisms. However, working with whole genomes sequenced over several years in different sequencing centres requires a framework to compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Genomes cohort as a test case to construct such a framework. This cohort contains whole cancer genomes of 2832 donors from 18 sequencing centres. We developed a non-redundant set of five quality control (QC) measurements to establish a star rating system. These QC measures reflect known differences in sequencing protocol and provide a guide to downstream analyses and allow for exclusion of samples of poor quality. We have found that this is an effective framework of quality measures. The implementation of the framework is available at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2 .


Assuntos
Genoma Humano/genética , Genômica/normas , Neoplasias/genética , Controle de Qualidade , Mapeamento Cromossômico/normas , Cromossomos Humanos/genética , Análise Mutacional de DNA/normas , Feminino , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Masculino , Mutação , Software , Sequenciamento Completo do Genoma/normas
8.
Clin Cancer Res ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106291

RESUMO

PURPOSE: Glioblastoma is the most aggressive brain tumor in adults and has few therapeutic options. The study of molecular subtype classifications may lead to improved prognostic classification and identification of new therapeutic targets. The Cancer Genome Atlas (TCGA) subtype classification has mainly been applied in U.S. clinical trials, while the intrinsic glioma subtype (IGS) has mainly been applied in European trials. EXPERIMENTAL DESIGN: From paraffin-embedded tumor samples of 432 patients with uniformly treated, newly diagnosed glioblastoma, we built tissue microarrays for IHC analysis and applied RNA sequencing to the best samples to classify them according to TCGA and IGS subtypes. RESULTS: We obtained transcriptomic results from 124 patients. There was a lack of agreement among the three TCGA classificatory algorithms employed, which was not solely attributable to intratumoral heterogeneity. There was overlapping of TCGA mesenchymal subtype with IGS cluster 23 and of TCGA classical subtype with IGS cluster 18. Molecular subtypes were not associated with prognosis, but levels of expression of 13 novel genes were identified as independent prognostic markers in glioma-CpG island methylator phenotype-negative patients, independently of clinical factors and MGMT methylation. These findings were validated in at least one external database. Three of the 13 genes were selected for IHC validation. In particular, high ZNF7 RNA expression and low ZNF7 protein expression were strongly associated with longer survival, independently of molecular subtypes. CONCLUSIONS: TCGA and IGS molecular classifications of glioblastoma have no higher prognostic value than individual genes and should be refined before being applied to clinical trials.

9.
Front Pediatr ; 8: 507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850563

RESUMO

Background: Non-febrile illness seizures may present in previously healthy children as afebrile seizures associated with minor infections, such as mild gastroenteritis or respiratory tract infections, and are linked to a genetic predisposition. For the novel human coronavirus SARS-CoV-2, causing COVID-19, fever, cough, and gastrointestinal complaints are the most common symptoms in children, and a hyperimmune response may be present. No detailed temporally associated neurological complications have been documented in pediatric case series so far. Case description: We present the case of a 3-months-old girl with non-febrile repeated seizures in a COVID-19 family setting. The infant started with a mild fever and cough that lasted for 2 days. At day 6 from onset, the girl presented with two focal motor seizures with impaired consciousness and awareness. All investigations ruled out signs of meningo-encephalitis or active epilepsy, including normal electroencephalogram and cerebral magnetic resonance imaging. PCR from nasal and throat swabs was positive for SARS-CoV-2. Remarkably, blood ferritin and D-dimer levels were increased. At day 9, the infant presented another afebrile motor seizure, and levetiracetam dose was modified there was a favorable response within 3 months of the follow-up. Much interest has been raised with regards to host genetic determinants to disease severity and susceptibility to COVID-19. We thus performed whole exome sequencing, revealing a pathogenic frameshift mutation in the PRRT2 gene in both the mother and the infant. The mother had presented two late infantile febrile convulsions with normal outcome afterwards. Discussion: The hyperimmune response described in adult cases with COVID-19 can be seen in infants, even in the absence of respiratory symptoms. Moreover, COVID-19 may present in infants as non-febrile seizures, triggering early onset seizures in infants with a genetic predisposition. In this pandemic situation, precision medicine using massive sequencing can shed light on underlying molecular mechanisms driving the host response to COVID-19.

10.
mSphere ; 5(4)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817379

RESUMO

Infections with multidrug-resistant bacteria often leave limited or no treatment options. The transfer of antimicrobial resistance genes (ARG) carrying plasmids between bacterial species by horizontal gene transfer represents an important mode of expansion of ARGs. Here, we demonstrate the application of Nanopore sequencing in a hospital setting for monitoring transfer and rapid evolution of antibiotic resistance plasmids within and across multiple species. In 2009, we experienced an outbreak with extensively multidrug-resistant Pseudomonas aeruginosa harboring the carbapenemase-encoding bla IMP-8 gene. In 2012, the first Citrobacter freundii and Citrobacter cronae strains harboring the same gene were detected. Using Nanopore and Illumina sequencing, we conducted comparative analysis of all bla IMP-8 bacteria isolated in our hospital over a 6-year period (n = 54). We developed the computational platform plasmIDent for Nanopore-based characterization of clinical isolates and monitoring of ARG transfer, comprising de novo assembly of genomes and plasmids, plasmid circularization, ARG annotation, comparative genome analysis of multiple isolates, and visualization of results. Using plasmIDent, we identified a 40-kb plasmid carrying bla IMP-8 in P. aeruginosa and C. freundii, verifying the plasmid transfer. Within C. freundii, the plasmid underwent further evolution and plasmid fusion, resulting in a 164-kb megaplasmid, which was transferred to C. cronae Multiple rearrangements of the multidrug resistance gene cassette were detected in P. aeruginosa, including deletions and translocations of complete ARGs. In summary, plasmid transfer, plasmid fusion, and rearrangement of the ARG cassette mediated the rapid evolution of opportunistic pathogens in our hospital. We demonstrated the feasibility of near-real-time monitoring of plasmid evolution and ARG transfer in clinical settings, enabling successful countermeasures to contain plasmid-mediated outbreaks.IMPORTANCE Infections with multidrug-resistant bacteria represent a major threat to global health. While the spread of multidrug-resistant bacterial clones is frequently studied in the hospital setting, surveillance of the transfer of mobile genetic elements between different bacterial species was difficult until recent advances in sequencing technologies. Nanopore sequencing technology was applied to track antimicrobial gene transfer in a long-term outbreak of multidrug-resistant Pseudomonas aeruginosa, Citrobacter freundii, and Citrobacter cronae in a German hospital over 6 years. We developed a novel computational pipeline, pathoLogic, which enables de novo assembly of genomes and plasmids, antimicrobial resistance gene annotation and visualization, and comparative analysis. Applying this approach, we detected plasmid transfer between different bacterial species as well as plasmid fusion and frequent rearrangements of the antimicrobial resistance gene cassette. This study demonstrated the feasibility of near-real-time tracking of plasmid-based antimicrobial resistance gene transfer in hospitals, enabling countermeasures to contain plasmid-mediated outbreaks.

11.
Cell Rep ; 32(7): 108048, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814051

RESUMO

During thymic development and upon peripheral activation, T cells undergo extensive phenotypic and functional changes coordinated by lineage-specific developmental programs. To characterize the regulatory landscape controlling T cell identity, we perform a wide epigenomic and transcriptional analysis of mouse thymocytes and naive CD4 differentiated T helper cells. Our investigations reveal a dynamic putative enhancer landscape, and we could validate many of the enhancers using the high-throughput CapStarr sequencing (CapStarr-seq) approach. We find that genes using multiple promoters display increased enhancer usage, suggesting that apparent "enhancer redundancy" might relate to isoform selection. Furthermore, we can show that two Runx3 promoters display long-range interactions with specific enhancers. Finally, our analyses suggest a novel function for the PRC2 complex in the control of alternative promoter usage. Altogether, our study has allowed for the mapping of an exhaustive set of active enhancers and provides new insights into their function and that of PRC2 in controlling promoter choice during T cell differentiation.

12.
J Exp Med ; 217(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667968

RESUMO

Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αß T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.

13.
G3 (Bethesda) ; 10(9): 2941-2952, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32660973

RESUMO

The octocoral, Paramuricea clavata, is a habitat-forming anthozoan with a key ecological role in rocky benthic and biodiversity-rich communities in the Mediterranean and Eastern Atlantic. Shallow populations of P. clavata in the North-Western Mediterranean are severely affected by warming-induced mass mortality events (MMEs). These MMEs have differentially impacted individuals and populations of P. clavata (i.e., varied levels of tissue necrosis and mortality rates) over thousands of kilometers of coastal areas. The eco-evolutionary processes, including genetic factors, contributing to these differential responses remain to be characterized. Here, we sequenced a P. clavata individual with short and long read technologies, producing 169.98 Gb of Illumina paired-end and 3.55 Gb of Oxford Nanopore Technologies (ONT) reads. We obtained a de novo genome assembly accounting for 607 Mb in 64,145 scaffolds. The contig and scaffold N50s are 19.15 Kb and 23.92 Kb, respectively. Despite of the low contiguity of the assembly, its gene completeness is relatively high, including 75.8% complete and 9.4% fragmented genes out of the 978 metazoan genes contained in the metazoa_odb9 database. A total of 62,652 protein-coding genes have been annotated. This assembly is one of the few octocoral genomes currently available. This is undoubtedly a valuable resource for characterizing the genetic bases of the differential responses to thermal stress and for the identification of thermo-resistant individuals and populations. Overall, having the genome of P. clavata will facilitate studies of various aspects of its evolutionary ecology and elaboration of effective conservation plans such as active restoration to overcome the threats of global change.

14.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32518403

RESUMO

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Animais , Benchmarking , Linhagem Celular , Bases de Dados Genéticas , Genômica/métodos , Genômica/normas , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Análise de Célula Única/normas
15.
Nat Commun ; 11(1): 2631, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457347

RESUMO

The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.


Assuntos
Adaptação Fisiológica/genética , Ephemeroptera/genética , Evolução Molecular , Asas de Animais , Animais , Ephemeroptera/classificação , Ephemeroptera/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Genoma de Inseto/genética , Brânquias , Insetos/classificação , Insetos/genética , Estágios do Ciclo de Vida/genética , Masculino , Filogenia
16.
Sci Rep ; 10(1): 6721, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317694

RESUMO

Patients diagnosed with T-cell leukemias and T-cell lymphomas (TCLs) still have a poor prognosis and an inadequate response to current therapies, highlighting the need for targeted treatments. We have analyzed the potential therapeutic value of the farnesyltransferase inhibitor, tipifarnib, in 25 TCL cell lines through the identification of genomic and/or immunohistochemical markers of tipifarnib sensitivity. More than half of the cell lines (60%) were considered to be sensitive. Tipifarnib reduced cell viability in these T-cell leukemia and TCL cell lines, induced apoptosis and modified the cell cycle. A mutational study showed TP53, NOTCH1 and DNMT3 to be mutated in 84.6%, 69.2% and 30.0% of sensitive cell lines, and in 62.5%, 0% and 0% of resistant cell lines, respectively. An immunohistochemistry study showed that p-ERK and RelB were associated as potential biomarkers of tipifarnib sensitivity and resistance, respectively. Data from RNA-seq show that tipifarnib at IC50 after 72 h downregulated a great variety of pathways, including those controlling cell cycle, metabolism, and ribosomal and mitochondrial activity. This study establishes tipifarnib as a potential therapeutic option in T-cell leukemia and TCL. The mutational state of NOTCH1, p-ERK and RelB could serve as potential biomarkers of tipifarnib sensitivity and resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Quinolonas/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/genética , Linfoma de Células T/patologia , Mutação/genética , Fenótipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Quinolonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
17.
Nat Commun ; 11(1): 1957, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327644

RESUMO

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Assuntos
Neostriado/citologia , Neurônios/fisiologia , Núcleo Accumbens/citologia , Receptores de Dopamina D2/metabolismo , Anfetamina/farmacologia , Animais , Biomarcadores/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Dopaminérgicos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neostriado/metabolismo , Neostriado/fisiologia , Vias Neurais , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Receptores de Dopamina D2/genética
18.
Haematologica ; 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273478

RESUMO

Plasmablastic lymphoma mutational profile is undescribed. Here we performed a targeted exonic NGS analysis of 30 plasmablastic lymphoma cases with a B cell lymphoma dedicated panel and FISH for the detection of MYC rearrangements. A complete phenotyping of the neoplastic and microenvironment cell populations was also performed. We have identified an enrichment in recurrent genetic events in MYC (69% with MYC translocation or amplification and 3 cases with missense point mutations), PRDM1/Blimp1 and STAT3 mutations. These gene mutations were more frequent in EBV positive disease. Other genetic events included mutations in BRAF, EP300, BCR (CD79A and CD79B), NOTCH pathway (NOTCH2, NOTCH1 and SGK1) and MYD88pL265P. Immunohistochemical analysis showed consistent MYC expression, higher in cases with MYC rearrangements together with phospho-STAT3 (Tyr705) overexpression in cases with STAT3 SH2 domain mutations. Microenvironment populations were heterogeneous and unrelated with EBV, with an enrichment of Tumor Associated Macrophages (TAM) and PD1 positive T cells. PD-L1 was expressed in all cases in the TAM population but only in 5 cases in the neoplastic cells (4 out of 14 EBV positive cases). HLA expression was absent in the majority of PBL cases. In summary, Plasmablastic lymphoma mutational profile is heterogeneous and related with EBV infection. Genetic events in MYC, STAT3 and PRDM1/Blimp1 are more frequent in EBV positive disease. An enrichment in TAM and PD1 reactive T lymphocytes is found in the microenvironment of PBL cases, that express PD-L1 in the neoplastic cells in a fraction of cases.

19.
J Clin Pathol ; 73(9): 571-577, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31980558

RESUMO

AIMS: The aim of this study was to describe the characteristics of the bone marrow infiltration found in a series of clinically defined lymphoplasmacytic lymphoma (LPL)/Waldenström macroglobulinaemia (WM) and IgM-monoclonal gammopathy of undetermined significance (MGUS) and to perform a targeted next-generation sequencing (NGS) for the identification of additional somatic mutations to MYD88p.L265P in LPL/WM. METHODS: We have reviewed a series of 35 bone marrow biopsies from 28 patients with a clinical diagnosis of LPL/WM (24 cases) or MGUS (4 cases). Bone marrow infiltration characteristics by morphology, immunohistochemistry, flow cytometry (FCM), allele-specific real-time PCR for the detection of MYD88p.L265P mutation, targeted exonic amplicon-based NGS of 35 lymphoma-related genes and direct sequencing were analysed. RESULTS: Our findings show that bone marrow trephine biopsy evaluation is superior to FCM in the identification of significant lymphoid infiltrates. A combined paratrabecular and interstitial infiltration pattern is the most common feature in LPL/WM while a patchy interstitial pattern characterises IgM-MGUS cases. MYD88p.L265P mutation was found by allele-specific-PCR in 92% of the LPL cases (22 out of 24) and 25% of IgM-MGUS cases (1 out of 4 cases). In addition to MYD88p.L265P somatic mutations in CXCR4, KMT2D, PRDM1/Blimp1, MYC and ID3 were found by NGS and direct sequencing in 4 cases. CONCLUSIONS: In conclusion, bone marrow core biopsy evaluation is critical in the identification of unequivocal bone marrow infiltration by LPL/WM. In addition to MYD88p.L265P, somatic mutations in CXCR4, KMT2D, PRDM1/Blimp1, MYC and ID3 can appear in a fraction of LPL/WM.


Assuntos
Linfoma/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Macroglobulinemia de Waldenstrom/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Alelos , Biópsia , Medula Óssea/patologia , Feminino , Humanos , Linfoma/genética , Linfoma/patologia , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mutação , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/patologia
20.
Mol Biol Evol ; 37(3): 730-756, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702774

RESUMO

Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a closely related clade to the aphids) and Coccoidea. We found that gene duplication has been pervasive throughout the evolution of aphids, including many parallel waves of recent, species-specific duplications. Most notably, we identified a consistent set of very ancestral duplications, originating from a large-scale gene duplication predating the diversification of Aphidomorpha (comprising aphids, phylloxerids, and adelgids). Genes duplicated in this ancestral wave are enriched in functions related to traits shared by Aphidomorpha, such as association with endosymbionts, and adaptation to plant defenses and phloem-sap-based diet. The ancestral nature of this duplication wave (106-227 Ma) and the lack of sufficiently conserved synteny make it difficult to conclude whether it originated from a whole-genome duplication event or, alternatively, from a burst of large-scale segmental duplications. Genome sequencing of other aphid species belonging to different Aphidomorpha and related lineages may clarify these findings.


Assuntos
Afídeos/classificação , Afídeos/genética , Duplicação Gênica , Perfilação da Expressão Gênica/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Evolução Molecular , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Filogenia , Especificidade da Espécie , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...