Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(2): 1505-11, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835907

RESUMO

Lasing properties have been investigated for Yb(3+) doped glasses with similar emission cross sections (σ(emi)) and lifetime while possessing different Stark levels. Narrow Stark splitting of Yb(3+)-phosphate glass is responsible for severe heat generation, narrow emission band and much smaller σ(emi) at lasing wavelength, making Yb(3+)-phosphate glass unsuccessful to achieve laser output, whereas 1.166W cw laser was obtained in Yb(3+)-fluorophosphate (FP) glass with broader Stark splitting. Analysis on laser system levels reveals that under room temperature, Yb(3+) laser is quasi-3.13-level in phosphate glass and quasi-3.36-level in FP glass. These demonstrations suggest that unless the Stark splitting is enlarged, conventional Yb(3+)-phosphate glass is not a good gain medium for bulk Yb(3+)-laser.

2.
Opt Express ; 22(8): 8831-42, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787773

RESUMO

60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

3.
Dalton Trans ; 43(21): 7752-9, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24699861

RESUMO

Magnesium spinel (MgAl2O4) powders doped with Yb(3+) ions have been synthesized by a sol-gel method and heat-treated in the range of 700-1000 °C for 3 h. XRD patterns indicated that the powders have a cubic structure with high crystallite dispersion. Nanoparticles in the range of 10-30 nm are obtained as a function of the dopant concentration and sintering temperature. The main Yb(3+) zero-phonon line is located at 976 nm. The spectroscopic properties of the Yb(3+) ions are characterized by broad absorption spectroscopy and emission spectroscopy. Even at low temperature, the spectra reveal a strong distorted spinel lattice due to the high inversion rate between Mg(2+) tetrahedral sites and Al(3+) octahedral sites. The substitution of Mg(2+) ions by Yb(3+) ions favors the creation of Yb(3+) ion pairs which are observed in the cooperative luminescence spectra at around 500 nm. The luminescence decays are influenced by both the Yb(3+) content, the energy transfer between ions and by the presence of pairs and aggregates. Detailed analysis of the observed structural and spectroscopic measurements has been described in this manuscript.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA