Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074023


In this work, a series of novel multifunctional epoxy (meth)acrylate resins based on a low-viscosity aliphatic triepoxide triglycidyl ether of trimethylolethane (TMETGE) and acrylic acid (AA) or methacrylic acid (MMA) have been synthesized. Thanks to the performed modification, the obtained prepolymers have both epoxides as well as carbon-carbon double bonds and differ in their amount. The obtained results indicate that the carboxyl-epoxide addition esterification occurs in the presence of a catalyst (triphenylphosphine) at a temperature of 90 °C, whilst the required degree of conversion can be achieved simply by varying both the reagents ratio and reaction time. The structure of synthesized copolymers was confirmed by spectroscopic analyses (FT-IR, 1H NMR, 13C NMR) and studied regarding its nonvolatile matter content (NV), acid value (PAVs), as well as its epoxy equivalent value (EE). Due to the presence of both epoxy and double carbon-carbon pendant groups, one can apply two distinct mechanisms: (i) cationic ring-opening polymerization or (ii) free-radical polymerization to crosslink polymer chains. Synthesized epoxy (meth)acrylate prepolymers were further employed to formulate photocurable coating compositions. Hence, when cationic photoinitiators were applied, polyether-type polymer chains with pending acrylate or methacrylate groups were formed. In the case of free-radical polymerization, epoxy (meth)acrylates certainly formed a poly(meth)acrylate backbone with pending epoxy groups. Further, photopolymerization behavior and properties of cured coatings were investigated regarding some structural factors and parameters. Moreover, reaction rate coefficients of photo-cross-linking by both cationic ring-opening and free-radical photopolymerization of the received epoxy (meth)acrylate resins were determined via real-time infrared spectroscopy (RT-IR). Lastly, basic physicomechanical properties, such as tack-free time, hardness, adhesion, gloss, and yellowness index of cured coatings, were evaluated.

Polymers (Basel) ; 13(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430233


New modifiers (i.e., acrylic syrups; ASs) of epoxy-resin-based thermally curable structural self-adhesive tapes (SATs) were prepared via a free radical bulk polymerization (FRBP) of n-butyl acrylate, butyl methacrylate, glycidyl methacrylate, and hydroxybutyl acrylate. In the process, two kinds of UV-photoinitiators (i.e., monoacylphosphine oxide/Omnirad TPO and bisacylphosphine oxide/Omnirad 819) and various mixing speed of the monomers mixture (200-1000 rpm) were applied. The TPO-based syrups exhibited a lower copolymers content (10-24 wt%), dynamic viscosity (<0.1 Pa·s), molecular weights (Mn and Mw, and polydispersity (1.9-2.5) than these with Omnirad 819. Additionally, the higher mixing speed significantly reduced monomers conversion and viscosity of ASs as well as molecular weights of the acrylate copolymers. These parameters influenced the properties of thermally uncured (e.g., adhesion) and thermally cured SATs (shear strength of aluminum/SAT/aluminum overlap joints). Better self-adhesive features were observed for SATs-TPO (based on ASs with lower monomers conversion, Mn and Mw); however, a slightly higher shear strength was noted for the thermally cured SAT-819 (ASs with higher monomers conversion, Mn and Mw). An impact of polydispersity of the acrylate copolymers as well as crosslinking degree of thermally cured SATs on the mechanical strength was also revealed.

Materials (Basel) ; 13(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322468


A new environmentally friendly method of photoreactive pressure-sensitive adhesives (PSAs) preparation was demonstrated. PSAs based on n-butyl acrylate (BA), acrylic acid (AA) and 4-acryloyloxy benxophenone (ABP) were prepared via the UV-induced cotelomerization process in the presence of a radical photoinitiator (acylphosphine oxide) and telogen (tetrabromomethane). Hydroxyterminated polybutadiene was used as a crosslinking agent. Influence of AA concentration (0-10 wt %) on kinetics of the cotelomerization process was investigated using a photodifferential scanning calorimetry method, selected physicochemical features of obtained photoreactive BA/AA/ABP cotelomers (molecular masses, polydispersity, monomers conversion and dynamic viscosity) and self-adhesive properties of obtained PSAs (adhesion, tack and cohesion) were studied, as well. It turned out that AA content is the important factor that influences monomers conversion (thereby the volatile parts content in prepolymer) and PSAs' properties. As the acrylic acid content increases, the reaction rate increases, but the total monomers conversion and the solid content of the prepolymer decreases. Additionally, the adhesion and cohesion of PSAs were grown up, and their tackiness decreased. However, the AA content has no effect on molecular weights (Mw and Mn) and polydispersity (c.a. 1.5) of photoreactive cotelomers. The optimal AA content necessary to obtain a prepolymer with low volatile parts content and good PSA properties was determined.

Polymers (Basel) ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987966


A new fabrication method for thin (120 µm) thermally curable structural self-adhesive tapes (SATs) was demonstrated by utilizing a series of acrylic syrups (ASs) modified using Bisphenol A-based liquid epoxy resin. The acrylic syrups containing poly(butyl acrylate-co-butyl methacrylate-co-glycidyl methacrylate-co-2-hydroxyetyl acrylate-co-4-acryloyloxy benzophenone) were synthesized via free-radical bulk-photopolymerization (FRBP) process. Influence of different type I radical photoinitiators (PIs), i.e., α-hydroxyalkylphenones (HPs), acylphosphine oxides (APOs) and its mixtures (HPs/APOs and APO/APO) on selected physico-chemical features of obtained ASs was studied. It turned out that APO-type PIs are more effective in the FRBP process (NMR studies). Self-adhesive tests of SATs revealed that the monomers' conversion in ASs have a significant influence on adhesion and tack. Moreover, the polymer structures formed at the UV cross-linking stage of SATs significantly affect the cross-linking degree of SATs during thermal curing (differential scanning calorimetry method). The highest values of overlap shear strength were achieved by SATs based on ASs with monomers' conversion on the level 50-60%.

Polymers (Basel) ; 11(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835734


New organic-inorganic hybrid copolymers (EA-POSSs) based on butyl acrylate, glycidyl methacylate, hydroxybutyl acrylate, acryloiloxybenzophenone and acryloxypropyl-heptaisobutyl-POSS (A-POSS) were prepared via free-radical solution polymerization (FRP) and applied as a component of thermally curable structural self-adhesive tapes (SATs). The EA-POSS with 0.25, 0.5 or 1 mol % of A-POSS exhibited significantly higher dynamic viscosity (ca. +104%), Mw (+61%) and polydispersity (+109%; measured using gel permeation chromatography) as well as lower Tg value (-16 °C) in relation to the A-POSS-free copolymer (EA-0). Differential scanning calorimetry (DSC) measurements (one glass transition process) confirmed statistic chain structure of the EA-POSS materials. Replacement of EA-0 by the EA-POSS copolymers in a SATs recipe caused simultaneous improvement of their self-adhesive features, i.e., adhesion (+70%), tack (+21%) and cohesion (+1590%). Moreover, the POSS-based copolymers improved the shear strength of thermally cured Al/SAT/Al overlap joints; the best mechanical resistance (before and after accelerated ageing tests) was observed for the sample containing 0.5 mol % of A-POSS (an increment range of 50-294% in relation to the A-POSS-free joints). Thermogravimetric analysis (TGA) revealed markedly improved thermal stability of the A-POSS-based SATs as well.