Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32543631

RESUMO

Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au25(SR)18- are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au13 core. The isomerization takes place without breaking of any Au-S bonds. The predicted isomer is essentially iso-energetic with the known Au25(SR)18- structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry.

2.
J Phys Chem A ; 124(23): 4827-4836, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32412747

RESUMO

We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiolate (SR) protected gold nanoclusters. The ML potential is trained for Au38(SR)24 by using previously published, density functional theory (DFT) based, molecular dynamics (MD) simulation data on two experimentally characterized structural isomers of the cluster and validated against independent DFT MD simulations. This method opens a door to efficient probing of the configuration space for further investigations of thermal-dependent electronic and optical properties of Au38(SR)24. Our ML implementation strategy allows for generalization and accuracy control of distance-based ML models for complex nanostructures having several chemical elements and interactions of varying strength.

3.
Chem Commun (Camb) ; 56(45): 6102-6105, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32355943

RESUMO

The preparation of a novel Au6 cluster bearing a bidentate mixed carbene-thiolate ligand is presented. The length of linker between the central benzimidazole and thiolate has a strong effect on the formation of cluster products, with a C2 chain giving an Au6 cluster, while a C3 chain results in no evidence of cluster formation. Density functional theory analysis predicts a non-metallic cluster with a large HOMO-LUMO (3.2-3.6 eV) and optical gap.

4.
J Phys Chem Lett ; 11(8): 3069-3074, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32233374

RESUMO

The electron binding mechanism in [Ag44(SC6H3F2)30]4- (SC6H3F2 = 3,4-difluorobenzenethiolate) tetra-anion was studied by photoelectron spectroscopy (PES), collision-induced dissociation mass spectrometry (CID-MS), and density functional theory (DFT) computations. PES showed that [Ag44(SC6H3F2)30]4- is energetically metastable with respect to electron autodetachment {[Ag44(SC6H3F2)30]3- + e-} and features a repulsive Coulomb barrier (RCB) with a height of 2.7 eV. However, CID-MS revealed that [Ag44(SC6H3F2)30]4- does not release an electron upon collisional excitation but undergoes dissociation. DFT computations performed on the known structure of [Ag44(SC6H3F2)30]4- confirmed the negative adiabatic electron affinity of [Ag44(SC6H3F2)30]3- and interpreted the experimental PE spectrum by taking into account tunneling electron photodetachment through the RCB.

5.
Chemistry ; 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32302026

RESUMO

The conventional synthetic methodology for atomically precise gold nanoclusters by using reduction in solution offers only the thermodynamically most stable nanoclusters. Herein, a solubility-driven isolation strategy is reported to access a metastable gold cluster. The cluster, with the composition of [Au9 (PPh3 )8 ]+ (1), displays an unusual, nearly perfect body-centered cubic (bcc) structure. As revealed by ESI-MS and UV/Vis measurements, the cluster is metastable in solution and converts to the well-known [Au11 (PPh3 )8 Cl2 ]+ (2) within just 90 min. DFT calculations revealed that although both 1 and 2 are eight-electron superatoms, there is a driving force to convert 1 to 2 as shown by the increased cohesion and larger HOMO-LUMO energy gap of 2. The isolation and crystallization of the metastable gold cluster were achieved in a biphasic reaction system in which reduction of gold precursors and crystallization of 1 took place concurrently. This synthetic protocol represents a successful strategy for investigations of other metastable species in metal nanocluster chemistry.

6.
Chemistry ; 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220016

RESUMO

Controlling the size and uniformity of metal clusters with atomic precision is essential for fine-tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X-ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer-protected clusters into catalysts. Based on the acidic nature of the support, cluster-support interactions lead either to fragmentation of the cluster into isolated Au-ligand species or ligand-free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while preserving the original size of the metal cluster, as demonstrated for various Aun sizes. These findings underline the role of the support in the design of supported catalysts and represent an important step toward the synthesis of atomically precise supported nanomaterials with tailored physico-chemical properties.

7.
Angew Chem Int Ed Engl ; 58(49): 17731-17735, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31517436

RESUMO

Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface-active for liquid-phase catalysis without any pre-treatment. Now, an N-heterocyclic carbene-stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25 (i Pr2 -bimy)10 Br7 ]2+ (i Pr2 -bimy=1,3-diisopropylbenzimidazolin-2-ylidene) (1), was synthesized by direct reduction of AuSMe2 Cl and i Pr2 -bimyAuBr with NaBH4 in one pot. X-ray crystallization analysis revealed that the cluster comprises two centered Au13 icosahedra sharing a vertex. Cluster 1 is highly stable and can survive in solution at 80 °C for 12 h, which is superior to Au25 nanoclusters passivated with phosphines or thiols. DFT computations reveal the origins of both electronic and thermal stability of 1 and point to the probable catalytic sites. This work provides new insights into the bonding capability of N-heterocyclic carbene to Au in a cluster, and offers an opportunity to probe the catalytic mechanism at the atomic level.

8.
J Am Chem Soc ; 141(38): 14997-15002, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31497943

RESUMO

Gold superatom nanoclusters stabilized entirely by N-heterocyclic carbenes (NHCs) and halides are reported. The reduction of well-defined NHC-Au-Cl complexes produces clusters comprised of an icosahedral Au13 core surrounded by a symmetrical arrangement of nine NHCs and three chlorides. X-ray crystallography shows that the clusters are characterized by multiple CH-π and π-π interactions, which rigidify the ligand and likely contribute to the exceptionally high photoluminescent quantum yields observed, up to 16.0%, which is significantly greater than that of the most luminescent ligand-protected Au13 superatom cluster. Density functional theory analysis suggests that clusters are 8-electron superatoms with a wide HOMO-LUMO energy gap of 2 eV. Consistent with this, the clusters have high stability relative to phosphine stabilized clusters.

9.
Nat Commun ; 10(1): 3973, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481712

RESUMO

Hybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis, nanomedicine, and solar energy. Despite a rapidly growing database of experimentally determined atom-precise nanoparticle structures and their properties, there has been no successful, systematic way to predict the atomistic structure of the metal-ligand interface. Here, we devise and validate a general method to predict the structure of the metal-ligand interface of ligand-stabilized gold and silver nanoparticles, based on information about local chemical environments of atoms in experimental data. In addition to predicting realistic interface structures, our method is useful for investigations on the steric effects at the metal-ligand interface, as well as for predicting isomers and intermediate structures induced by thermal dynamics or interactions with the environment. Our method is applicable to other hybrid nanomaterials once a suitable set of reference structures is available.

10.
Chem Commun (Camb) ; 55(64): 9460-9462, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328191

RESUMO

The electronic structure and chiroptical properties of the recently isolated and structurally characterized all-alkynyl-protected gold nanocluster Au144(CCPhF)60 were analyzed via density functional theory (DFT) computations and compared to those of the structurally similar all-thiolate-protected Au144(SCH2Ph)60. While DFT predicts very strong CD signals of similar strength for both clusters, the origins of chiroptical activity are markedly different. The chiral response of Au144(CCPhF)60 originates only from the footprint of the outermost gold-ligand layer of 30 FPhCC-Au-CCPhF units covering an achiral Ih-symmetric Au114 core whereas the Au114 core of the Au144(SCH2Ph)60 cluster has a chiral I symmetry and it alone produces CD signals that are comparable to those of the well-studied chiral Au38(SR)24. These signals are then amplified by a chiral arrangement of the protecting 30 PhH2CS-Au-SCH2Ph units. These results shed light on the origins of chiroptical activity of ligand-protected gold clusters that form an important class of atom-precise nanomaterials with potential applications in chiral sensing and enantioselective catalysis.

11.
J Am Chem Soc ; 141(30): 11905-11911, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31294970

RESUMO

No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides' location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can be described as (ν1-cube)@(truncated-ν3-octahedron)@(ν2-cube), respectively. The presence of 12 hydrides in each cluster was systematically identified by various techniques. Based on a detailed analysis of the structural features and 1H and 2H NMR spectra, the positions of the 12 hydrides were determined to be residing on the 12 edges of the cubic core. As a result, the electron count of the Ag40 cluster is a two-electron superatomic system instead of a 14-electron system. Moreover, based on our DFT calculations and experimental probes, it was demonstrated that the 12 hydrides play a crucial role in stabilizing both the electronic and geometric structure of the Ag40H12 cluster. The successful synthesis of stable hydride-containing Ag nanoclusters and the identification of hydride positions are expected to simulate research attention on both synthesis and application of hydride-containing Ag nanomaterials.

12.
ACS Nano ; 13(5): 5975-5986, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31067029

RESUMO

Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.

13.
J Am Chem Soc ; 141(21): 8422-8425, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31083937

RESUMO

While there are numerous recent reports on doping of a ligand-protected noble metal nanocluster (e.g., Au and Ag) with another noble metal, non-noble metal (e.g., Cd) doping remains challenging. Here, we design a phosphine-assisted synthetic strategy and synthesize a Cd doped Ag nanocluster, Cd12Ag32(SePh)36 (SePh: selenophenolate), which exhibits characteristic UV-vis absorption features and rare near-infrared (NIR) photoluminescence at ∼1020 nm. The X-ray single crystal structure reveals an asymmetric two-shell Ag4@Ag24 metal kernel protected by four nonplanar Cd3Ag(SePh)9 metal-ligand frameworks. Furthermore, the electronic structure analysis shows that the cluster is a 20-electron "superatom" and density functional theory predicts that its chiral optical response is comparable to the well-known Au38(SR)24 cluster. Our synthetic approach will pave a new path for introducing other non-noble metals into noble metal nanoclusters for exploring their effect on optical and chemical properties.

14.
Nat Chem ; 11(5): 419-425, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988416

RESUMO

Magic-number gold nanoclusters are atomically precise nanomaterials that have enabled unprecedented insight into structure-property relationships in nanoscience. Thiolates are the most common ligand, binding to the cluster via a staple motif in which only central gold atoms are in the metallic state. The lack of other strongly bound ligands for nanoclusters with different bonding modes has been a significant limitation in the field. Here, we report a previously unknown ligand for gold(0) nanoclusters-N-heterocyclic carbenes (NHCs)-which feature a robust metal-carbon single bond and impart high stability to the corresponding gold cluster. The addition of a single NHC to gold nanoclusters results in significantly improved stability and catalytic properties in the electrocatalytic reduction of CO2. By varying the conditions, nature and number of equivalents of the NHC, predominantly or exclusively monosubstituted NHC-functionalized clusters result. Clusters can also be obtained with up to five NHCs, as a mixture of species.

15.
J Am Chem Soc ; 141(14): 6006-6012, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30889350

RESUMO

On the basis of density functional theory computations of the well-known chiral Au38(SR)24 nanocluster and its Pd- and Ag-doped derivatives, we propose here a mechanism for chiral inversion that does not require the breaking of a metal-sulfur bond at the metal-ligand interface but features a collective rotation of the gold core. The calculated energy barriers for this mechanism for Au38 and Pd-doped Au38 are in the range of 1-1.5 eV, significantly lower than barriers involving the breakage of Au-S bonds (2.5 eV). For Ag-doped Au38, barriers for both mechanisms are similar (1.3-1.5 eV). Inversion barriers for a larger chiral Au144(SR)60 are much higher (2.5-2.8 eV). Our computed barriers are in good agreement with racemization barriers estimated from existing experiments for bare and doped Au38. These results highlight the sensitivity of chiral inversion to the size, structure, and metal composition of the metal core and sensitivity to the detailed structure of the metal-thiolate interface. Our work also predicts that enantiopure Au144(SR)60 clusters would be promising materials for applications requiring high resistance to chiral inversion.

16.
J Phys Chem A ; 122(43): 8576-8584, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351094

RESUMO

The electronic structures of a variety of experimentally identified gold and silver nanoclusters from 20 to 246 atoms, either unprotected or protected by several types of ligands, are characterized by using point group specific symmetry analysis. The delocalized electron states around the HOMO-LUMO energy gap, originating from the metal s-electrons in the cluster core, show symmetry characteristics according to the point group that describes best the atomic arrangement of the core. This indicates strong effects of the lattice structure and overall shape of the metal core to the electronic structure, which cannot be captured by the conventional analysis based on identification of spherical angular momentum shells in the "superatom" model. The symmetry analysis discussed in this paper is free from any restrictions regarding shape or structure of the metal core, and is shown to be superior to the conventional spherical harmonics analysis for any symmetry that is lower than I h. As an immediate application, we also demonstrate that it is possible to reach considerable savings in computational time by using the symmetry information inside a conventional linear-response calculation for the optical absorption spectrum of the Ag55 cluster anion, without any loss in accuracy of the computed spectrum. Our work demonstrates an efficient way to analyze the electronic structure of nonspherical, but atomically ordered nanocrystals and ligand-protected clusters with nanocrystal metal cores, and it can be viewed as the generalization of the superatom model demonstrated for spherical shapes 10 years ago ( Walter, M.; et al. Proc. Natl. Acad. Sci. U. S. A. 2008 , 105 , 9157 - 9162 ).

17.
Nat Commun ; 9(1): 3357, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135426

RESUMO

This paper reports co-crystallization of two atomically precise, different-size ligand-stabilized nanoclusters, a spherical (AuAg)267(SR)80 and a smaller trigonal-prismatic (AuAg)45(SR)27(PPh3)6 in 1:1 ratio, characterized fully by X-ray crystallographic analysis (SR = 2,4-SPhMe2). The larger cluster has a four concentric-shell icosahedral structure of Ag@M12@M42@M92@Ag120(SR)80 (M = Au or Ag) with the inner-core M147 icosahedron observed here for metal nanoparticles. The cluster has an open electron shell of 187 delocalized electrons, fully metallic, plasmonic behavior, and a zero HOMO-LUMO energy gap. The smaller cluster has an 18-electron shell closing, a notable HOMO-LUMO energy gap and a molecule-like optical spectrum. This is the first direct demonstration of the simultaneous presence of competing effects (closing of atom vs. electron shells) in nanocluster synthesis and growth, working together to form a co-crystal of different-sized clusters. This observation suggests a strategy that may be helpful in the design of other nanocluster systems via co-crystallization.

18.
Nat Commun ; 9(1): 2948, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054489

RESUMO

High-resolution real-space imaging of nanoparticle surfaces is desirable for better understanding of surface composition and morphology, molecular interactions at the surface, and nanoparticle chemical functionality in its environment. However, achieving molecular or sub-molecular resolution has proven to be very challenging, due to highly curved nanoparticle surfaces and often insufficient knowledge of the monolayer composition. Here, we demonstrate sub-molecular resolution in scanning tunneling microscopy imaging of thiol monolayer of a 5 nm nanoparticle Ag374 protected by tert-butyl benzene thiol. The experimental data is confirmed by comparisons through a pattern recognition algorithm to simulated topography images from density functional theory using the known total structure of the Ag374 nanocluster. Our work demonstrates a working methodology for investigations of structure and composition of organic monolayers on curved nanoparticle surfaces, which helps designing functionalities for nanoparticle-based applications.

19.
Angew Chem Int Ed Engl ; 57(22): 6522-6526, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29607588

RESUMO

The self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding-directed self-assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p-mercaptobenzoic acid (pMBA)-protected atomically precise silver nanocluster, Na4 [Ag44 (pMBA)30 ], and pMBA-functionalized GNRs were used. High-resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding, leading to octahedral symmetry. The use of water-dispersible gold nanoclusters, Au≈250 (pMBA)n and Au102 (pMBA)44 , also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles are a new category of precision hybrids with diverse possibilities.

20.
Annu Rev Phys Chem ; 69: 205-229, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29490202

RESUMO

Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA