Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Hum Mutat ; 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595648

RESUMO

We report 281 individuals carrying a pathogenic recurrent NF1 missense variants at p.Met1149, p.Arg1276 or p.Lys1423, representing three non-truncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% CI, 20.5%-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276 or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared to the "classic" NF1-affected cohorts (all P<0.0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all P<0.0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (P<0.0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population. This article is protected by copyright. All rights reserved.

2.
Am J Med Genet A ; 179(7): 1126-1138, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31058441

RESUMO

CHOPS syndrome is a multisystem disorder caused by missense mutations in AFF4. Previously, we reported three individuals whose primary phenotype included cognitive impairment and coarse facies, heart defects, obesity, pulmonary involvement, and short stature. This syndrome overlaps phenotypically with Cornelia de Lange syndrome, but presents distinct differences including facial features, pulmonary involvement, and obesity. Here, we provide clinical descriptions of an additional eight individuals with CHOPS syndrome, as well as neurocognitive analysis of three individuals. All 11 individuals presented with features reminiscent of Cornelia de Lange syndrome such as synophrys, upturned nasal tip, arched eyebrows, and long eyelashes. All 11 individuals had short stature and obesity. Congenital heart disease and pulmonary involvement were common, and those were seen in about 70% of individuals with CHOPS syndrome. Skeletal abnormalities are also common, and those include abnormal shape of vertebral bodies, hypoplastic long bones, and low bone mineral density. Our observation indicates that obesity, pulmonary involvement, skeletal findings are the most notable features distinguishing CHOPS syndrome from Cornelia de Lange syndrome. In fact, two out of eight of our newly identified patients were found to have AFF4 mutations by targeted AFF4 mutational analysis rather than exome sequencing. These phenotypic findings establish CHOPS syndrome as a distinct, clinically recognizable disorder. Additionally, we report three novel missense mutations causative for CHOPS syndrome that lie within the highly conserved, 14 amino acid sequence of the ALF homology domain of the AFF4 gene, emphasizing the critical functional role of this region in human development.

3.
Hum Mutat ; 40(10): 1731-1748, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31045291

RESUMO

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.

5.
Eur Heart J Cardiovasc Imaging ; 20(8): 932-938, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668650

RESUMO

AIMS: Myocardial oxygenation is impaired in hypertrophic cardiomyopathy (HCM) patients with left ventricular hypertrophy (LVH), and possibly also in HCM gene carriers without LVH. Whether these oxygenation changes are also associated with abnormalities in diastolic function or left ventricular (LV) strain are unknown. METHODS AND RESULTS: We evaluated 60 subjects: 20 MYBPC3 gene positive patients with LVH (G+LVH+), 18 MYBPC3 gene positive without LVH (G+LVH-), 11 gene negative siblings (G-), and 11 normal controls (NC). All subjects underwent 2D transthoracic echocardiography and cardiovascular magnetic resonance imaging for assessment of ventricular volumes, mass, and myocardial oxygenation at rest and adenosine stress using the blood oxygen level dependent (BOLD) technique. Maximal septal thickness was 20 mm in the G+LVH+ group, vs. 9 mm for the G+LVH- group. As expected, the G+LVH+ group had a more blunted myocardial oxygenation response to stress when compared with the G+LVH- group (-5% ± 3% vs. 2% ± 4%, P < 0.05), G- siblings (-5% ± 3% vs. 11% ± 4%, P < 0.0001) and NC (-5% ± 3% vs. 15% ± 4%, P < 0.0001). A blunted BOLD response to stress was also seen in G+LVH- subjects when compared with gene negative siblings (2% ± 4% vs. 11% ± 4%, P < 0.05) and NC (15% ± 4%, P < 0.050). G+LVH+ patients exhibited abnormal diastolic function including lower E', higher E to E' ratio and greater left atrial area compared with the G+LVH- subjects who all had normal values for these indices. CONCLUSION: Myocardial deoxygenation during stress is observed in MYBPC3 HCM patients, even in the presence of normal LV diastolic function, LV global longitudinal strain, and LV wall thickness.

6.
Am J Hum Genet ; 103(5): 666-678, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343943

RESUMO

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.

7.
Clin Epigenetics ; 10(1): 114, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165906

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. RESULTS: Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. CONCLUSIONS: This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS.

8.
Mol Psychiatry ; 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728705

RESUMO

RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.

9.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29805042

RESUMO

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.

10.
Genet Med ; 20(9): 1061-1068, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29215649

RESUMO

PURPOSE: The craniosynostoses are characterized by premature fusion of one or more cranial sutures. The relative contribution of previously reported genes to craniosynostosis in large cohorts is unclear. Here we report on the use of a massively parallel sequencing panel in individuals with craniosynostosis without a prior molecular diagnosis. METHODS: A 20-gene panel was designed based on the genes' association with craniosynostosis, and clinically validated through retrospective testing of an Australian and New Zealand cohort of 233 individuals with craniosynostosis in whom previous testing had not identified a causative variant within FGFR1-3 hot-spot regions or the TWIST1 gene. An additional 76 individuals were tested prospectively. RESULTS: Pathogenic or likely pathogenic variants in non-FGFR genes were identified in 43 individuals, with diagnostic yields of 14% and 15% in retrospective and prospective cohorts, respectively. Variants were identified most frequently in TCF12 (N = 22) and EFNB1 (N = 8), typically in individuals with nonsyndromic coronal craniosynostosis or TWIST1-negative clinically suspected Saethre-Chotzen syndrome. Clinically significant variants were also identified in ALX4, EFNA4, ERF, and FGF10. CONCLUSION: These findings support the clinical utility of a massively parallel sequencing panel for craniosynostosis. TCF12 and EFNB1 should be included in genetic testing for nonsyndromic coronal craniosynostosis or clinically suspected Saethre-Chotzen syndrome.

11.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575647

RESUMO

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Assuntos
Cromatina/metabolismo , Haploinsuficiência/genética , Deficiência Intelectual/genética , Transcrição Genética , Fator de Transcrição YY1/genética , Acetilação , Adolescente , Sequência de Bases , Pré-Escolar , Imunoprecipitação da Cromatina , Estudos de Coortes , Elementos Facilitadores Genéticos/genética , Feminino , Ontologia Genética , Haplótipos/genética , Hemizigoto , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Metilação , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Domínios Proteicos , Fator de Transcrição YY1/química
12.
Nat Neurosci ; 20(8): 1043-1051, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628100

RESUMO

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.


Assuntos
Sequência de Aminoácidos/genética , Transtorno Autístico/genética , Exoma/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Feminino , Humanos , Masculino , Receptores de AMPA/genética , Receptores de Glutamato/genética
13.
BMC Med Genet ; 18(1): 52, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482824

RESUMO

BACKGROUND: Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to determine the genetic cause of syndromic congenital cataract in an Australian mother and son. METHOD: Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein changing. Variants were assessed for segregation with the phenotype in the affected mother. RESULT: A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G, p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from public variant databases. CONCLUSION: The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family.


Assuntos
Catarata/congênito , Deficiências do Desenvolvimento/genética , Perda Auditiva/genética , Fatores de Transcrição Maf/genética , Mutação de Sentido Incorreto , Convulsões/genética , Adulto , Sequência de Aminoácidos , Animais , Catarata/genética , Feminino , Humanos , Fatores de Transcrição Maf/química , Masculino , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
14.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
15.
J Genet Couns ; 26(1): 159-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27443149

RESUMO

The role of genetic counselors in prenatal paternity testing has not been widely studied in the genetic counseling literature. In South Australia, the genetic counselors of the State's public sector clinical genetics service are the primary contact point for women seeking information and testing, also coordinating the testing process. This has provided the opportunity to review all prenatal paternity testing performed in the State over a 13 year period and to consider the role played by the genetic counselor. We explored the reasons why women requested prenatal paternity testing and whether the genetic counselor was an appropriate health professional to facilitate this testing for women. The study had two parts, an audit of the clinical genetics files of 160 women who requested prenatal paternity testing between March 2001 and March 2014, and qualitative interviews of genetic counselors, clinical geneticists, obstetricians and social workers with involvement in this area. The audit determined that in 69.9 % of cases the long-term partner was the father of the pregnancy, for 23.7 % the short-term or other partner was the father and for 6.4 % the paternity results were not known by the genetic counselor. For 45.5 % of women whose long-term partner was excluded as the father, the women chose to have a termination of pregnancy. The results of the qualitative interviews yielded five major themes: accessibility of testing, role of the genetic counselor, social and relationship issues, decision making in pregnancy and emotional issues. We conclude that the genetic counselor is an appropriate health professional to facilitate prenatal paternity testing. Genetic counselors did not view their role as significantly different from a request for prenatal testing for another indication.


Assuntos
Conselheiros , Tomada de Decisões , Aconselhamento Genético , Mães/psicologia , Paternidade , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Austrália do Sul , Adulto Jovem
16.
Am J Med Genet A ; 170(11): 2960-2964, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27481052

RESUMO

Chronic histiocytic intervillositis (CHI) is characterized by the presence of histiocytes within the intervillous space of the placenta. The pathogenesis is unclear but available evidence supports an alloimmune mechanism on the basis of the presence in maternal blood of HLA antibodies directed against paternal HLA antigens. CHI has a high risk of recurrence and of abnormal perinatal outcomes. Little is known about the effects of CHI on the developing fetus, in particular on the growth and development of the skeleton. We have studied a woman whose third pregnancy was terminated after ultrasonography showed severe intrauterine growth restriction, raising the possibility of a lethal skeletal dysplasia. Postmortem radiographs showed multiple fractures and other signs of osteogenesis imperfecta (OI). However, bone histology was not typical of OI and no abnormalities were identified by sequencing OI genes. The subsequent pregnancy was also severely growth restricted and was terminated. The placenta showed chronic histiocytic intervillositis, which, on retrospective review, had also been present in her second and third pregnancies. Her fifth pregnancy was again associated with intrauterine growth restriction and CHI but resulted in a premature birth. CHI can be associated with radiographic features that mimic OI and should be considered when fetal fractures occur in the context of recurrent miscarriage, fetal death in utero, and intrauterine growth restriction. The correct diagnosis can be made by histopathology of the placenta, supported by bone histology and normal results of molecular studies for OI. © 2016 Wiley Periodicals, Inc.


Assuntos
Doenças Ósseas Metabólicas/diagnóstico , Retardo do Crescimento Fetal/diagnóstico , Fraturas Ósseas/diagnóstico , Histiócitos/patologia , Placenta/patologia , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Doença Crônica , Feminino , Histiócitos/metabolismo , Humanos , Imuno-Histoquímica , Gravidez , Radiografia , Recidiva
17.
Birth Defects Res A Clin Mol Teratol ; 106(9): 761-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324669

RESUMO

BACKGROUND: The South Australian Birth Defects Register (SABDR) has collected the date of diagnosis of notified birth defects since the 2005 birth year cohort. This study aims to document the age at diagnosis for each of the main diagnostic categories of birth defects, to produce a profile of when defects are diagnosed. METHODS: Deidentified data were extracted from the SABDR for birth years 2005 to 2007. Each birth defect was assigned to a mutually exclusive date of diagnosis category (termination/stillbirth; neonatal [birth-28 days]; 1 month-1 year; 1-2 years; 2-3 years; 3-4 years; 4-5 years; unspecified). Each defect was also grouped according to the International Classification of Diseases Ninth edition-British Paediatric Association major diagnostic categories (nervous, cardiovascular, respiratory, gastrointestinal, urogenital, musculoskeletal, chromosomal, metabolic, hematological/immune, other). RESULTS: There were 6419 defects identified in 3676 individuals, and 98.6% of defects had a diagnosis date recorded. Terminations of pregnancy/stillbirths accounted for 20.3% of defects notified, and a further 46.7% of defects were diagnosed within the neonatal period. A total of 81.5% of defects were diagnosed by 1 year of age. An additional 17.2% of defects were diagnosed between the ages of 1 and 5 years. There were wide differences in age at diagnosis between the major diagnostic categories. CONCLUSION: This study highlights the value of birth defect registers collecting information about birth defects from terminations of pregnancy, stillbirths, and live births up to a child's fifth birthday. Reviewing diagnosis date provides insight into the pattern of diagnosis of different birth defects. This provides valuable information to medical specialists and researchers regarding the interpretation of information from birth defect data collections. Birth Defects Research (Part A) 106:761-766, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/epidemiologia , Sistema de Registros , Fatores Etários , Austrália/epidemiologia , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
18.
Heart Rhythm ; 13(8): 1652-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27157848

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. Mutations in the cardiac ryanodine receptor gene (RYR2) cause an autosomal dominant form of CPVT, while mutations in the cardiac calsequestrin 2 gene (CASQ2) cause an autosomal recessive form. OBJECTIVE: The aim of this study was to clinically and genetically evaluate a large family with severe autosomal dominant CPVT. METHODS: Clinical evaluation of family members was performed, including detailed history, physical examination, electrocardiogram, exercise stress test, and autopsy review of decedents. We performed genome-wide linkage analysis in 12 family members and exome sequencing in 2 affected family members. In silico models of mouse and rabbit myocyte electrophysiology were used to predict potential disease mechanisms. RESULTS: Severe CPVT with dominant inheritance in 6 members was diagnosed in a large family with 2 sudden deaths, 2 resuscitated cardiac arrests, and multiple appropriate implantable cardioverter-defibrillator shocks. A comprehensive analysis of cardiac arrhythmia genes did not reveal a pathogenic variant. Exome sequencing identified a novel heterozygous missense variant in CASQ2 (Lys180Arg) affecting a highly conserved residue, which cosegregated with disease and was absent in unaffected family members. Genome-wide linkage analysis confirmed a single linkage peak at the CASQ2 locus (logarithm of odds ratio score 3.01; θ = 0). Computer simulations predicted that haploinsufficiency was unlikely to cause the severe CPVT phenotype and suggested a dominant negative mechanism. CONCLUSION: We show for the first time that a variant in CASQ2 causes autosomal dominant CPVT. Genetic testing in dominant CPVT should include screening for heterozygous CASQ2 variants.


Assuntos
Calsequestrina/genética , DNA/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Calsequestrina/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Testes Genéticos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Adulto Jovem
19.
Hum Mol Genet ; 24(25): 7171-81, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443594

RESUMO

Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.


Assuntos
Antígenos Nucleares/genética , Deficiência Intelectual/genética , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Humanos , Masculino , Comportamento Problema , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Hum Mutat ; 36(12): 1197-204, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350204

RESUMO

To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID-associated genes using targeted next-generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss-of-function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%-15% yield from array CGH alone.


Assuntos
Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Deficiência Intelectual/genética , Alelos , Estudos de Coortes , Biologia Computacional/métodos , Feminino , Humanos , Padrões de Herança , Masculino , Mutação , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA