RESUMO
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
RESUMO
Magnesium-based amorphous alloys have aroused broad interest in being applied in marine use due to their merits of lightweight and high strength. Yet, the poor corrosion resistance to chloride-containing seawater has hindered their practical applications. Herein, we propose a new strategy to improve the chloride corrosion resistance of amorphous Mg65Cu15Ag10Gd10 alloys by engineering atomic-to-nano scale structural homogeneity, which is implemented by heating the material to the critical temperature of the liquid-liquid transition. By using various electrochemical, microscopic, and spectroscopic characterization methods, we reveal that the liquid-liquid transition can rearrange the local structural units in the amorphous structure, slightly decreasing the alloy structure's homogeneity, accelerate the formation of protective passivation film, and, therefore, increase the corrosion resistance. Our study has demonstrated the strong coupling between an amorphous structure and corrosion behavior, which is available for optimizing corrosion-resistant alloys.
RESUMO
Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1- x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.
RESUMO
Nanocomposite materials, consisting of two or more phases, at least one of which has a nanoscale dimension, play a distinctive role in materials science because of the multiple possibilities for tailoring their structural properties and, consequently, their functionalities. In addition to the challenges of controlling the size, size distribution and volume fraction of nanometer phases, thermodynamic stability conditions limit the choice of constituent materials. This study goes beyond this limitation by showing the possibility of achieving nanocomposites from a bimetallic system, which exhibits complete miscibility under equilibrium conditions. A series of nanocomposite samples with different compositions were synthesized by the co-deposition of 2000-atoms Ni-clusters and an atomic flux of Cu-atoms using a novel Cluster Ion Beam Deposition system. The retention of the metastable nanostructure is ascertained from atom probe tomography (APT), magnetometry, and magneto-transport studies. APT confirms the presence of nanoscale regions with ≈100 at. % Ni. Magnetometry and magneto-transport studies reveal superparamagnetic behavior and magneto-resistance stemming from the single-domain ferromagnetic Ni-clusters embedded in the Cu-matrix. Essentially, the magnetic properties of the nanocomposites can be tailored by the precise control of the Ni concentration. The initial results offer a promising direction for future research on nanocomposites consisting of fully-miscible elements. This article is protected by copyright. All rights reserved.
RESUMO
The development of high-strength metals has driven the endeavor of pushing the limit of grain size (d) reduction according to the Hall-Petch law. But the continuous grain refinement is particularly challenging, raising also the problem of inverse Hall-Petch effect. Here, we show that the nanograined metals (NMs) with d of tens of nanometers could be strengthened to the level comparable to or even beyond that of the extremely-fine NMs (d ~ 5 nm) attributing to the dislocation exhaustion. We design the Fe-Ni NM with intergranular Ni enrichment. The results show triggering of structural transformation at grain boundaries (GBs) at low temperature, which consumes lattice dislocations significantly. Therefore, the plasticity in the dislocation-exhausted NMs is suggested to be dominated by the activation of GB dislocation sources, leading to the ultra-hardening effect. This approach demonstrates a new pathway to explore NMs with desired properties by tailoring phase transformations via GB physico-chemical engineering.
RESUMO
The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties.
RESUMO
Strontium ferromolybdate, Sr2FeMoO6, is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation via a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr2FeMoO6 can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO3) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr2FeMoO6 phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, 57Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe0 â Fe3+) with simultaneous reduction of Mo cations (Mo6+ â Mo5+), occuring during the mechanosynthesis of Sr2FeMoO6, is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr2FeMoO6, even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr2FeMoO6 is characterized by both, the strongly distorted geometry of the constituent FeO6 octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder ASD = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe3+ and Mo5+ cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr2FeMoO6 nanoparticles exhibit superparamagnetism with the blocking temperature T B = 240 K and the deteriorated effective magnetic moment µ = 0.055 µ B per formula unit.
RESUMO
Metallic glasses (MGs), with high density of low coordination sites and high Gibbs free energy state, are novel promising and competitive candidates in the family of electrochemical catalysts. However, it remains a grand challenge to modify the properties of MGs by control of the disordered atomic structure. Recently, nanostructured metallic glasses (NGs), consisting of amorphous nanometer-sized grains connected by amorphous interfaces, have been reported to exhibit tunable properties compared to the MGs with identical chemical composition. Here, it is demonstrated that electrodeposited Ni-P NG is characterized by an extremely high energy state due to its heterogeneous structure, which significantly promotes the catalytic performance. Moreover, the Ni-P NG with a heterogeneous structure is a perfect precursor for the fabrication of unique honey-like nanoporous structure, which displays superior catalytic performance in the urea oxidation reaction (UOR). Specifically, modified Ni-P NG requires a potential of mere 1.36 V at 10 mA cm-2 , with a Tafel slope of 13 mV dec-1 , which is the best UOR performance in Ni-based alloys. The present work demonstrates that the nanostructurization of MGs provides a universal and effective pathway to upgrade the energy state of MGs for the design of high-performance catalysts in energy conversion.
RESUMO
The spleen is often involved in malignant lymphoma, which manifests on CT as either splenomegaly or focal, hypodense lymphoma lesions. This study aimed to investigate the diagnostic value of radiomics features of the spleen in classifying malignant lymphoma against non-lymphoma as well as the determination of malignant lymphoma subtypes in the case of disease presence-in particular Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), and follicular lymphoma (FL). Spleen segmentations of 326 patients (139 female, median age 54.1 +/- 18.7 years) were generated and 1317 radiomics features per patient were extracted. For subtype classification, we created four different binary differentiation tasks and addressed them with a Random Forest classifier using 10-fold cross-validation. To detect the most relevant features, permutation importance was analyzed. Classifier results using all features were: malignant lymphoma vs. non-lymphoma AUC = 0.86 (p < 0.01); HL vs. NHL AUC = 0.75 (p < 0.01); DLBCL vs. other NHL AUC = 0.65 (p < 0.01); MCL vs. FL AUC = 0.67 (p < 0.01). Classifying malignant lymphoma vs. non-lymphoma was also possible using only shape features AUC = 0.77 (p < 0.01), with the most important feature being sphericity. Based on only shape features, a significant AUC could be achieved for all tasks, however, best results were achieved combining shape and textural features. This study demonstrates the value of splenic imaging and radiomic analysis in the diagnostic process in malignant lymphoma detection and subtype classification.
RESUMO
Materials with strong magnetostructural coupling have complex energy landscapes featuring multiple local ground states, thus making it possible to switch among distinct magnetic-electronic properties. However, these energy minima are rarely accessible by a mere application of an external stimuli to the system in equilibrium state. A ferromagnetic ground state, with Tc above room temperature, can be created in an initially paramagnetic alloy by nonequilibrium nanostructuring. By a dealloying process, bulk chemically disordered FeRh alloys are transformed into a nanoporous structure with the topology of a few nanometer-sized ligaments and nodes. Magnetometry and Mössbauer spectroscopy reveal the coexistence of two magnetic ground states, a conventional low-temperature spin-glass and a hitherto-unknown robust ferromagnetic phase. The emergence of the ferromagnetic phase is validated by density functional theory calculations showing that local tetragonal distortion induced by surface stress favors ferromagnetic ordering. The study provides a means for reaching conventionally inaccessible magnetic states, resulting in a complete on/off ferromagnetic-paramagnetic switching over a broad temperature range.
RESUMO
Finding prognostic biomarkers with high accuracy in patients with pancreatic cancer (PC) remains a challenging problem. To improve the prediction of survival and to investigate the relevance of quantitative imaging biomarkers (QIB) we combined QIB with established clinical parameters. In this retrospective study a total of 75 patients with metastatic PC and liver metastases were analyzed. Segmentations of whole liver tumor burden (WLTB) from baseline contrast-enhanced CT images were used to derive QIBs. The benefits of QIBs in multivariable Cox models were analyzed in comparison with two clinical prognostic models from the literature. To discriminate survival, the two clinical models had concordance indices of 0.61 and 0.62 in a statistical setting. Combined clinical and imaging-based models achieved concordance indices of 0.74 and 0.70 with WLTB volume, tumor burden score (TBS), and bilobar disease being the three WLTB parameters that were kept by backward elimination. These combined clinical and imaging-based models have significantly higher predictive performance in discriminating survival than the underlying clinical models alone (p < 0.003). Radiomics and geometric WLTB analysis of patients with metastatic PC with liver metastases enhances the modeling of survival compared with models based on clinical parameters alone.
RESUMO
Public health research and epidemiological and clinical studies are necessary to understand the COVID-19 pandemic and to take appropriate action. Therefore, since early 2020, numerous research projects have also been initiated in Germany. However, due to the large amount of information, it is currently difficult to get an overview of the diverse research activities and their results. Based on the "Federated research data infrastructure for personal health data" (NFDI4Health) initiative, the "COVID-19 task force" is able to create easier access to SARS-CoV-2- and COVID-19-related clinical, epidemiological, and public health research data. Therefore, the so-called FAIR data principles (findable, accessible, interoperable, reusable) are taken into account and should allow an expedited communication of results. The most essential work of the task force includes the generation of a study portal with metadata, selected instruments, other study documents, and study results as well as a search engine for preprint publications. Additional contents include a concept for the linkage between research and routine data, a service for an enhanced practice of image data, and the application of a standardized analysis routine for harmonized quality assessment. This infrastructure, currently being established, will facilitate the findability and handling of German COVID-19 research. The developments initiated in the context of the NFDI4Health COVID-19 task force are reusable for further research topics, as the challenges addressed are generic for the findability of and the handling with research data.
Assuntos
Pesquisa Biomédica/tendências , COVID-19 , Disseminação de Informação , Alemanha , Humanos , Metadados , Pandemias , SARS-CoV-2RESUMO
Prussian blue analogues (PBAs) are reported to be efficient sodium storage materials because of the unique advantages of their metal-organic framework structure. However, the issues of low specific capacity and poor reversibility, caused by phase transitions during charge/discharge cycling, have thus far limited the applicability of these materials. Herein, a new approach is presented to substantially improve the electrochemical properties of PBAs by introducing high entropy into the crystal structure. To achieve this, five different metal species are introduced, sharing the same nitrogen-coordinated site, thereby increasing the configurational entropy of the system beyond 1.5R. By careful selection of the elements, high-entropy PBA (HE-PBA) presents a quasi-zero-strain reaction mechanism, resulting in increased cycling stability and rate capability. The key to such improvement lies in the high entropy and associated effects as well as the presence of several active redox centers. The gassing behavior of PBAs is also reported. Evolution of dimeric cyanogen due to oxidation of the cyanide ligands is detected, which can be attributed to the structural degradation of HE-PBA during battery operation. By optimizing the electrochemical window, a Coulombic efficiency of nearly 100% is retained after cycling for more than 3000 cycles.
RESUMO
The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.
RESUMO
The datasets presented here are related to the research paper entitled "Disordered Gd6UO12-δ with the cation antisite defects prepared by a combined mechanochemical-thermal method"[1]. The datasets complement the findings [1] on the effect of the combined mechanochemical-thermal processing of the stoichiometric mixture of solid precursors (3Gd2O3 + UO2) on the formation of Gd6UO12-δ phase. In this article, we provide (i) X-ray diffraction (XRD) data of the 3Gd2O3 + UO2 mixture milled for 12 h, (ii) the refined XRD data of the non-milled 3Gd2O3 + UO2 mixture after annealing at 1282⯰C for 3 h in air, and (iii) the thermogravimetric and differential thermal analysis (TG-DTA) data for non-milled and mechanically preactivated 3Gd2O3 + UO2 mixture measured in air at a heat rate of 10 K/min.
RESUMO
The prospective applications of metallic glasses are limited by their lack of ductility, attributed to shear banding inducing catastrophic failure. A concise depiction of the local atomic arrangement (local atomic packing and chemical short-range order), induced by shear banding, is quintessential to understand the deformation mechanism, however still not clear. An explicit view of the complex interplay of local atomic structure and chemical environment is presented by mapping the atomic arrangements in shear bands (SBs) and in their vicinity in a deformed Vitreloy 105 metallic glass, using the scanning electron diffraction pair distribution function and atom probe tomography. The results experimentally prove that plastic deformation causes a reduction of geometrically favored polyhedral motifs. Localized motifs variations and antisymmetric (bond and chemical) segregation extend for several hundred nanometers from the SB, forming the shear band affected zones. Moreover, the variations within the SB are found both perpendicular and parallel to the SB plane, also observable in the oxidation activity. The knowledge of the structural-chemical changes provides a deeper understanding of the plastic deformation of metallic glasses especially for their functional applications and future improvements.
RESUMO
We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.