Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Biomaterials ; 244: 119766, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32199284


The extracellular matrix represents a dynamic microenvironment regulating essential cell functions in vivo. Tissue engineering approaches aim to recreate the native niche in vitro using biological scaffolds generated by organ decellularization. So far, the organ specific origin of such scaffolds was less considered and potential consequences for in vitro cell culture remain largely elusive. Here, we show that organ specific cues of biological scaffolds affect cellular behavior. In detail, we report on the generation of a well-preserved pancreatic bioscaffold and introduce a scoring system allowing standardized inter-study quality assessment. Using multiple analysis tools for in-depth-characterization of the biological scaffold, we reveal unique compositional, physico-structural, and biophysical properties. Finally, we prove the functional relevance of the biological origin by demonstrating a regulatory effect of the matrix on multi-lineage differentiation of human induced pluripotent stem cells emphasizing the significance of matrix specificity for cellular behavior in artificial microenvironments.

ACS Appl Mater Interfaces ; 12(11): 12445-12456, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32142257


Amphiphilic block copolymers that undergo (reversible) physical gelation in aqueous media are of great interest in different areas including drug delivery, tissue engineering, regenerative medicine, and biofabrication. We investigated a small library of ABA-type triblock copolymers comprising poly(2-methyl-2-oxazoline) as the hydrophilic shell A and different aromatic poly(2-oxazoline)s and poly(2-oxazine)s cores B in an aqueous solution at different concentrations and temperatures. Interestingly, aqueous solutions of poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazine)-block-poly(2-methyl-2-oxazoline) (PMeOx-b-PPheOzi-b-PMeOx) undergo inverse thermogelation below a critical temperature by forming a reversible nanoscale wormlike network. The viscoelastic properties of the resulting gel can be conveniently tailored by the concentration and the polymer composition. Storage moduli of up to 110 kPa could be obtained while the material retains shear-thinning and rapid self-healing properties. We demonstrate three-dimensional (3D) printing of excellently defined and shape-persistent 24-layered scaffolds at different aqueous concentrations to highlight its application potential, e.g., in the research area of biofabrication. A macroporous microstructure, which is stable throughout the printing process, could be confirmed via cryo-scanning electron microscopy (SEM) analysis. The absence of cytotoxicity even at very high concentrations opens a wide range of different applications for this first-in-class material in the field of biomaterials.

J Funct Biomater ; 10(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394886


The synthesis and characterization of an ABA triblock copolymer based on hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks A and a modestly hydrophobic poly(2-iso-butyl-2-oxazoline) (piBuOx) block B is described. Aqueous polymer solutions were prepared at different concentrations (1-20 wt %) and their thermogelling capability using visual observation was investigated at different temperatures ranging from 5 to 80 °C. As only a 20 wt % solution was found to undergo thermogelation, this concentration was investigated in more detail regarding its temperature-dependent viscoelastic profile utilizing various modes (strain or temperature sweep). The prepared hydrogels from this particular ABA triblock copolymer have interesting rheological and viscoelastic properties, such as reversible thermogelling and shear thinning, and may be used as bioink, which was supported by its very low cytotoxicity and initial printing experiments using the hydrogels. However, the soft character and low yield stress of the gels do not allow real 3D printing at this point.

Sci Rep ; 8(1): 11660, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076330


The human transcription elongation factor DSIF is highly conserved throughout all kingdoms of life and plays multiple roles during transcription. DSIF is a heterodimer, consisting of Spt4 and Spt5 that interacts with RNA polymerase II (RNAP II). DSIF binds to the elongation complex and induces promoter-proximal pausing of RNAP II. Human Spt5 consists of a NusG N-terminal (NGN) domain motif, which is followed by several KOW domains. We determined the solution structures of the human Spt5 KOW4 and the C-terminal domain by nuclear magnetic resonance spectroscopy. In addition to the typical KOW fold, the solution structure of KOW4 revealed an N-terminal four-stranded ß-sheet, previously designated as the KOW3-KOW4 linker. In solution, the C-terminus of Spt5 consists of two ß-barrel folds typical for KOW domains, designated KOW6 and KOW7. We also analysed the nucleic acid and RNAP II binding properties of the KOW domains. KOW4 variants interacted with nucleic acids, preferentially single stranded RNA, whereas no nucleic acid binding could be detected for KOW6-7. Weak binding of KOW4 to the RNAP II stalk, which is comprised of Rpb4/7, was also detected, consistent with transient interactions between Spt5 and these RNAP II subunits.

Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ácidos Nucleicos/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Difusão , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Rotação , Soluções , Relação Estrutura-Atividade , Especificidade por Substrato
Biomacromolecules ; 19(7): 3119-3128, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29746117


Many natural compounds with interesting biomedical properties share one physicochemical property, namely, low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse, and recently it has been discussed that macromolecular engineering can be used to optimize drug-loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. In the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, whereas the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[ a, c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long-term stability, ability to form stable highly loaded binary coformulations in different drug combinations, small-sized formulations, and amorphous structures in all cases corroborate earlier reports that poly(2-oxazoline)-based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules may be more complex and are significantly influenced by both sides, the used carrier and drug, and must be investigated in each specific case.

Antineoplásicos Fitogênicos/química , Produtos Biológicos/química , Hidrocarbonetos Aromáticos/análise , Antineoplásicos Fitogênicos/toxicidade , Produtos Biológicos/toxicidade , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxazóis/química , Tensoativos/química
J Am Chem Soc ; 139(32): 10980-10983, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28750162


Polymer micelles offer the possibility to create a nanoscopic environment that is distinct from the bulk phase. They find applications in catalysis, drug delivery, cleaning, etc. Often, one simply distinguishes between hydrophilic and hydrophobic, but fine-tuning of the microenvironment is possible by adjusting the structure of the polymer amphiphile. Here, we investigated a small library of structurally similar amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s with respect to their solubilization capacity for two extremely water insoluble drugs, curcumin and paclitaxel. We found very significant and orthogonal specificities even if only one methylene group is exchanged between the polymer backbone and side chain. More strikingly, we observed profound synergistic and antagonistic solubilization patterns for the coformulation of the two drugs. Our findings shed new light on host-guest interaction in polymer micelles and such pronounced host-guest specificities in polymer micelles may not only be interesting in drug delivery but also for applications such as micellar catalysis.

Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Oxazinas/química , Oxazóis/química , Paclitaxel/administração & dosagem , Tensoativos/química , Antineoplásicos/química , Curcumina/química , Micelas , Paclitaxel/química , Solubilidade , Água/química