Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
2.
Psychol Med ; : 1-12, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33827729

RESUMO

BACKGROUND: MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood. METHODS: We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness. RESULTS: The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing. CONCLUSIONS: Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.

3.
Brain ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33848319

RESUMO

Although cerebrospinal fluid (CSF) analysis routinely enables diagnosis of neurological diseases, it is mainly used for gross distinction between infectious, autoimmune inflammatory, and degenerative central nervous system (CNS) disorders. To investigate, whether a multi-dimensional cellular blood and CSF characterization can support the diagnosis of clinically similar neurological diseases, we analyzed 546 patients with autoimmune neuro-inflammatory, degenerative, or vascular conditions in a cross-sectional retrospective study. By combining feature selection with dimensionality reduction and machine learning approaches we identified pan-disease parameters altered across all autoimmune neuro-inflammatory CNS-diseases and differentiating them from other neurological conditions and inter-autoimmunity classifiers sub-differentiating variants of CNS-directed autoimmunity. Pan-disease as well as diseases-specific changes formed a continuum, reflecting clinical disease evolution. A validation cohort of 231 independent patients confirmed that combining multiple parameters into composite scores can assist classification of neurological patients. Overall, we show that an integrated analysis of blood and CSF parameters improves differential diagnosis of neurological diseases, thereby facilitating early treatment decisions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33684623

RESUMO

BACKGROUND: Major depressive disorder (MDD) and type 2 diabetes (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if so, how these effects could contribute to the disease course of MDD. METHODS: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic MDD patients and 539 healthy controls. RESULTS: Polygenic risk score for T2D across MDD patients and healthy controls was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this FA variation may mediate the association between PGS and cognitive performance. CONCLUSIONS: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in MDD patients and healthy controls, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33648793

RESUMO

Apolipoprotein E (APOE) genotype is the strongest single gene predictor of Alzheimer's disease (AD) and has been frequently associated with AD-related brain structural alterations before the onset of dementia. While previous research has primarily focused on hippocampal morphometry in relation to APOE, sporadic recent findings have questioned the specificity of the hippocampus and instead suggested more global effects on the brain. With the present study we aimed to investigate associations between homozygous APOE ε4 status and cortical gray matter structure as well as white matter microstructure. In our study, we contrasted n = 31 homozygous APOE ε4 carriers (age=34.47 years, including a subsample of n = 12 subjects with depression) with a demographically matched sample without an ε4 allele (resulting total sample: N = 62). Morphometry analyses included a) Freesurfer based cortical segmentations of thickness and surface area measures and b) tract based spatial statistics of DTI measures. We found pronounced and widespread reductions in cortical surface area of ε4 homozygotes in 57 out of 68 cortical brain regions. In contrast, no differences in cortical thickness were observed. Furthermore, APOE ε4 homozygous carriers showed significantly lower fractional anisotropy in the corpus callosum, the right internal and external capsule, the left corona radiata and the right fornix. The present findings support a global rather than regionally specific effect of homozygous APOE ε4 allele status on cortical surface area and white matter microstructure. Future studies should aim to delineate the clinical implications of these findings.

6.
JMIR Ment Health ; 8(1): e24333, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33433392

RESUMO

BACKGROUND: Smartphone-based symptom monitoring has gained increased attention in psychiatric research as a cost-efficient tool for prospective and ecologically valid assessments based on participants' self-reports. However, a meaningful interpretation of smartphone-based assessments requires knowledge about their psychometric properties, especially their validity. OBJECTIVE: The goal of this study is to systematically investigate the validity of smartphone-administered assessments of self-reported affective symptoms using the Remote Monitoring Application in Psychiatry (ReMAP). METHODS: The ReMAP app was distributed to 173 adult participants of ongoing, longitudinal psychiatric phenotyping studies, including healthy control participants, as well as patients with affective disorders and anxiety disorders; the mean age of the sample was 30.14 years (SD 11.92). The Beck Depression Inventory (BDI) and single-item mood and sleep information were assessed via the ReMAP app and validated with non-smartphone-based BDI scores and clinician-rated depression severity using the Hamilton Depression Rating Scale (HDRS). RESULTS: We found overall high comparability between smartphone-based and non-smartphone-based BDI scores (intraclass correlation coefficient=0.921; P<.001). Smartphone-based BDI scores further correlated with non-smartphone-based HDRS ratings of depression severity in a subsample (r=0.783; P<.001; n=51). Higher agreement between smartphone-based and non-smartphone-based assessments was found among affective disorder patients as compared to healthy controls and anxiety disorder patients. Highly comparable agreement between delivery formats was found across age and gender groups. Similarly, smartphone-based single-item self-ratings of mood correlated with BDI sum scores (r=-0.538; P<.001; n=168), while smartphone-based single-item sleep duration correlated with the sleep item of the BDI (r=-0.310; P<.001; n=166). CONCLUSIONS: These findings demonstrate that smartphone-based monitoring of depressive symptoms via the ReMAP app provides valid assessments of depressive symptomatology and, therefore, represents a useful tool for prospective digital phenotyping in affective disorder patients in clinical and research applications.

7.
Psychoneuroendocrinology ; 126: 105148, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33513455

RESUMO

Novelty seeking (NS) has previously been identified as a personality trait that is associated with elevated body mass index (BMI) and obesity. Of note, both obesity and reduced impulse control - a core feature of NS - have previously been associated with grey matter volume (GMV) reductions in the orbitofrontal cortex (OFC). Yet, it remains unknown, if body weight-related grey matter decline in the OFC might be explained by higher levels of NS. To address this question, we studied associations between NS, BMI and brain structure in 355 healthy subjects. Brain images were pre-processed using voxel-based morphometry (VBM). BMI was calculated from self-reported height and weight. The Tridimensional Personality Questionnaire (TPQ) was used to assess NS. NS and BMI were associated positively (r = .137, p = .01) with NS being a significant predictor of BMI (B = 0.172; SE B = 0.05; ß = 0.184; p = 0.001). Significant associations between BMI and GMV specifically in the OFC (x = -44, y = 56, z = -2, t(350) = 4.34, k = 5, pFWE = 0.011) did not uphold when correcting for NS in the model. In turn, a significant negative association between NS and OFC GMV was found independent of BMI (x = -2, y = 48, z = -10, t(349) = 4.42, k = 88, pFWE = 0.008). Body mass-related grey matter decrease outside the OFC could not be attributed to NS. Our results suggest that body-weight-related orbitofrontal grey matter reduction can at least partly be linked to higher levels of NS. Given the pivotal role of the OFC in overweight as well as cognitive domains such as impulse inhibition, executive control and reward processing, its association with NS seems to provide a tenable neurobiological correlate for future research.

8.
Psychol Med ; : 1-9, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32921338

RESUMO

BACKGROUND: Eighty percent of all patients suffering from major depressive disorder (MDD) relapse at least once in their lifetime. Thus, understanding the neurobiological underpinnings of the course of MDD is of utmost importance. A detrimental course of illness in MDD was most consistently associated with superior longitudinal fasciculus (SLF) fiber integrity. As similar associations were, however, found between SLF fiber integrity and acute symptomatology, this study attempts to disentangle associations attributed to current depression from long-term course of illness. METHODS: A total of 531 patients suffering from acute (N = 250) or remitted (N = 281) MDD from the FOR2107-cohort were analyzed in this cross-sectional study using tract-based spatial statistics for diffusion tensor imaging. First, the effects of disease state (acute v. remitted), current symptom severity (BDI-score) and course of illness (number of hospitalizations) on fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity were analyzed separately. Second, disease state and BDI-scores were analyzed in conjunction with the number of hospitalizations to disentangle their effects. RESULTS: Disease state (pFWE < 0.042) and number of hospitalizations (pFWE< 0.032) were associated with decreased FA and increased MD and RD in the bilateral SLF. A trend was found for the BDI-score (pFWE > 0.067). When analyzed simultaneously only the effect of course of illness remained significant (pFWE < 0.040) mapping to the right SLF. CONCLUSIONS: Decreased FA and increased MD and RD values in the SLF are associated with more hospitalizations when controlling for current psychopathology. SLF fiber integrity could reflect cumulative illness burden at a neurobiological level and should be targeted in future longitudinal analyses.

9.
Fortschr Neurol Psychiatr ; 88(12): 786-793, 2020 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-32998163

RESUMO

Currently, we are witnessing an increasing interest in predictive models and personalized diagnosis and treatment choice in psychiatric research. Against this background, the emerging field of Precision Psychiatry is trying to establish precise diagnostics and personalized therapy through Big Data. Electronic Health Records (EHR), smartphone-based data collection and advances in genotyping and imaging allow for a detailed clinical and neurobiological characterization of numerous patients. In order to revolutionize the treatment of psychiatric disorders, a personalization of psychiatry through machine learning (ML) and artificial intelligence (AI) is needed. We must therefore establish an AI ecosystem to develop and strictly validate custom-tailored AI and ML solutions. Furthermore, personalized predictions and detailed patient information must be integrated in AI-based Clinical Decision Support systems. Only in this way can Big Data, ML and AI support the clinician most effectively and help personalize treatment in psychiatry.

10.
Psychol Med ; : 1-11, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32758327

RESUMO

BACKGROUND: Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood. METHODS: We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors. RESULTS: We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy. CONCLUSIONS: This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).

11.
Brain Struct Funct ; 225(7): 2111-2129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32696074

RESUMO

A positive association between brain size and intelligence is firmly established, but whether region-specific anatomical differences contribute to general intelligence remains an open question. Results from voxel-based morphometry (VBM) - one of the most widely used morphometric methods - have remained inconclusive so far. Here, we applied cross-validated machine learning-based predictive modeling to test whether out-of-sample prediction of individual intelligence scores is possible on the basis of voxel-wise gray matter volume. Features were derived from structural magnetic resonance imaging data (N = 308) using (a) a purely data-driven method (principal component analysis) and (b) a domain knowledge-based approach (atlas parcellation). When using relative gray matter (corrected for total brain size), only the atlas-based approach provided significant prediction, while absolute gray matter (uncorrected) allowed for above-chance prediction with both approaches. Importantly, in all significant predictions, the absolute error was relatively high, i.e., greater than ten IQ points, and in the atlas-based models, the predicted IQ scores varied closely around the sample mean. This renders the practical value even of statistically significant prediction results questionable. Analyses based on the gray matter of functional brain networks yielded significant predictions for the fronto-parietal network and the cerebellum. However, the mean absolute errors were not reduced in contrast to the global models, suggesting that general intelligence may be related more to global than region-specific differences in gray matter volume. More generally, our study highlights the importance of predictive statistical analysis approaches for clarifying the neurobiological bases of intelligence and provides important suggestions for future research using predictive modeling.

12.
Front Syst Neurosci ; 14: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581732

RESUMO

Similar to patients with Major depressive disorder (MDD), healthy subjects at risk for depression show hyperactivation of the amygdala as a response to negative emotional expressions. The medial prefrontal cortex is responsible for amygdala control. Analyzing a large cohort of healthy subjects, we aimed to delineate malfunction in amygdala regulation by the medial prefrontal cortex in subjects at increased risk for depression, i.e., with a family history of affective disorders or a personal history of childhood maltreatment. We included a total of 342 healthy subjects from the FOR2107 cohort (www.for2107.de). An emotional face-matching task was used to identify the medial prefrontal cortex and right amygdala. Dynamic Causal Modeling (DCM) was conducted and neural coupling parameters were obtained for healthy controls with and without particular risk factors for depression. We assigned a genetic risk if subjects had a first-degree relative with an affective disorder and an environmental risk if subjects experienced childhood maltreatment. We then compared amygdala inhibition during emotion processing between groups. Amygdala inhibition by the medial prefrontal cortex was present in subjects without those two risk factors, as indicated by negative model parameter estimates. Having a genetic risk (i.e., a family history) did not result in changes in amygdala inhibition compared to no risk subjects. In contrast, childhood maltreatment as environmental risk has led to a significant reduction of amygdala inhibition by the medial prefrontal cortex. We propose a mechanistic explanation for the amygdala hyperactivity in subjects with particular risk for depression, in particular childhood maltreatment, caused by a malfunctioned amygdala downregulation via the medial prefrontal cortex. As childhood maltreatment is a major environmental risk factor for depression, we emphasize the importance of this potential early biomarker.

13.
Psychol Med ; : 1-10, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32578531

RESUMO

BACKGROUND: Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes. METHODS: In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales 'schizotypal signs' (STS) and 'schizophrenia nuclear symptoms' (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12. RESULTS: For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole. CONCLUSIONS: Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.

14.
Stud Health Technol Inform ; 270: 889-893, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570510

RESUMO

Consumer wearables can provide objective monitoring of movement disorders and may identify new phenotypical biomarkers. We present a novel smartwatch-based prototype, which is implemented as a prospective study in neurology. A full-stack Machine Learning pipeline utilizing Artificial Neural Networks (ANN), Random Forests and Support Vector Machines (SVM) was established and optimized to train for two clinically relevant classification tasks: First, to distinguish neurodegenerative movement disorders such as Parkinson's Disease (PD) or Essential Tremor from healthy subjects. Second, to distinguish specifically PD from other movement disorders or healthy subjects. The system was trained by 318 samples, including 192 PD, 75 other movement disorders and 51 healthy participants. All models were trained and tested with hyperparameter optimization and nested cross-validation. Regarding the more general first task, the ANN succeeded best with precision of 0.94 (SD 0.03) and recall of 0.92 (SD 0.04). Concerning the more specific second task, the SVM performed best with precision of 0.81 (SD 0.01) and recall of 0.89 (SD 0.04). These preliminary results are promising as compared to the literature-reported diagnostic accuracy of neurologists. In addition, a new data foundation with highly structured and clinically annotated acceleration data was established, which enables future biomarker analyses utilizing consumer devices in movement disorders.


Assuntos
Máquina de Vetores de Suporte , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Doença de Parkinson , Estudos Prospectivos
15.
Eur Neuropsychopharmacol ; 36: 10-17, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451266

RESUMO

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.

16.
Mol Psychiatry ; 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424236

RESUMO

Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.

17.
Front Psychiatry ; 11: 189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372978

RESUMO

Introduction: Affective disorders are a major global burden, with approximately 15% of people worldwide suffering from some form of affective disorder. In patients experiencing their first depressive episode, in most cases it cannot be distinguished whether this is due to bipolar disorder (BD) or major depressive disorder (MDD). Valid fluid biomarkers able to discriminate between the two disorders in a clinical setting are not yet available. Material and Methods: Seventy depressed patients suffering from BD (bipolar I and II subtypes) and 42 patients with major MDD were recruited and blood samples were taken for proteomic analyses after 8 h fasting. Proteomic profiles were analyzed using the Multiplex Immunoassay platform from Myriad Rules Based Medicine (Myriad RBM; Austin, Texas, USA). Human DiscoveryMAPTM was used to measure the concentration of various proteins, peptides, and small molecules. A multivariate predictive model was consequently constructed to differentiate between BD and MDD. Results: Based on the various proteomic profiles, the algorithm could discriminate depressed BD patients from MDD patients with an accuracy of 67%. Discussion: The results of this preliminary study suggest that future discrimination between bipolar and unipolar depression in a single case could be possible, using predictive biomarker models based on blood proteomic profiling.

18.
Mol Psychiatry ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32467648

RESUMO

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.

19.
Neuroimage ; 218: 116956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470572

RESUMO

A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning).

20.
Neuropsychopharmacology ; 45(10): 1758-1765, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272482

RESUMO

Transgender individuals (TIs) show brain-structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of N = 1753 cisgender (CG) healthy participants were used to train (N = 1402) and validate (20% holdout N = 351) a support-vector machine classifying the biological sex. As a second validation, we classified N = 1104 patients with depression. A third validation was performed using the matched CG sample of the transgender women (TW) application sample. Subsequently, the classifier was applied to N = 26 TW. Finally, we compared brain volumes of CG-men, women, and TW-pre/post treatment cross-sex hormone treatment (CHT) in a univariate analysis controlling for sexual orientation, age, and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR-male = 56.0%). The TPR did not differ between CG-individuals with (TPR-male = 86.9%) and without depression (TPR-male = 88.5%). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain-structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain-structural alterations leading to a different pattern of brain structure than CG-individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...