Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Small ; 18(14): e2107054, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174974


Miniaturized electronics suffer from a lack of energy autonomy. In that context, the fabrication of lithium-ion solid-state microbatteries with high performance is mandatory for powering the next generation of portable electronic devices. Here, the fabrication of a thin film positive electrode for 3D Li-ion microbatteries made by the atomic layer deposition (ALD) method and in situ lithiation step is demonstrated. The 3D electrodes based on spinel LiMn2 O4 films operate at high working potential (4.1 V vs Li/Li+ ) and are capable of delivering a remarkable surface capacity (≈180 µAh cm-2 ) at low C-rate while maintaining more than 40 µAh cm-2 at C/2 (time constant = 2 h). Both the thickness of the electrode material and the 3D gain of the template are carefully tuned to maximize the electrode performance. Advanced characterization techniques such as transmission electron and X-ray transmission microscopies are proposed as perfect tools to study the conformality of the deposited films and the interfaces between each layer: no interdiffusion or segregation are observed. This work represents a major issue towards the fabrication of 3D-lithiated electrode by ALD-without any prelithiation step by electrochemical technique-making it an attractive solution for the fabrication of 3D Li-ion solid-state microbatteries with semiconductor processing methods.

Small Methods ; 6(2): e2100891, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954905


Micro-batteries are attractive miniaturized energy devices for new Internet of Things applications, but the lack of understanding of their degradation process during cycling hinders improving their performance. Here focused ion beam (FIB)-lamella from LiMn1.5 Ni0.5 O4 (LMNO) thin-film cathode is in situ cycled in a liquid electrolyte inside an electrochemical transmission electron microscope (TEM) holder to analyze structural and morphology changes upon (de)lithiation processes. A high-quality electrical connection between the platinum (Pt) current collector of FIB-lamella and the microchip's Pt working electrode is established, as confirmed by local two-probe conductivity measurements. In situ cyclic voltammetry (CV) experiments show two redox activities at 4.41 and 4.58/4.54 V corresponding to the Ni2+/3+ and Ni3+/4+ couples, respectively. (S)TEM investigations of the cycled thin-film reveal formation of voids and cracks, loss of contact with current collector, and presence of organic decomposition products. The 4D STEM ASTAR technique highlights the emergence of an amorphization process and a decrease in average grain size from 20 to 10 nm in the in situ cycled electrode. The present findings, obtained for the first time through the liquid electrochemical TEM study, provide several insights explaining the capacity fade of the LMNO thin-film cathode typically observed upon cycling in a conventional liquid electrolyte.

ACS Appl Mater Interfaces ; 13(13): 15761-15773, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765380


LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this "material model system" can deliver a remarkable surface capacity (∼0.4 mAh cm-2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.