Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Anal Bioanal Chem ; 2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33580830

RESUMO

Cyantraniliprole and chlorantraniliprole are anthranilic diamide insecticides acting on ryanodine receptors. In this study, two camel-derived nanobodies (Nbs, named C1 and C2) recognizing cyantraniliprole as well as chlorantraniliprole were generated. C1-based enzyme-linked immunosorbent assays (ELISAs) for the detection of the two insecticides were developed. The half-maximum signal inhibition concentrations (IC50) of cyantraniliprole and chlorantraniliprole by ELISA were 1.2 and 1.5 ng mL-1, respectively. This assay was employed to detect these two insecticides in soil and vegetables. The average recoveries of cyantraniliprole from both bok choy (Brassica chinensis L.) and soil samples were 90-129%, while those of chlorantraniliprole were in a range of 89-120%. The insecticide residues in soil and bok choy, which were collected from plots sprayed with cyantraniliprole and chlorantraniliprole, were simultaneously detected by the resulting ELISA and a high-performance liquid chromatography (HPLC) method, showing a satisfactory correlation. Higher concentrations of chlorantraniliprole than cyantraniliprole were detected in soil and vegetables, which indicates the longer persistence of chlorantraniliprole in the environment.

2.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567578

RESUMO

Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13-16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC-MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.

3.
J Med Chem ; 64(4): 1856-1872, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33550801

RESUMO

This report describes the development of an orally active analgesic that resolves inflammation and neuropathic pain without the addictive potential of opioids. EC5026 acts on the cytochrome P450 branch of the arachidonate cascade to stabilize epoxides of polyunsaturated fatty acids (EpFA), which are natural mediators that reduce pain, resolve inflammation, and maintain normal blood pressure. EC5026 is a slow-tight binding transition-state mimic that inhibits the soluble epoxide hydrolase (sEH) at picomolar concentrations. The sEH rapidly degrades EpFA; thus, inhibiting sEH increases EpFA in vivo and confers beneficial effects. This mechanism addresses disease states by shifting endoplasmic reticulum stress from promoting cellular senescence and inflammation toward cell survival and homeostasis. We describe the synthesis and optimization of EC5026 and its development through human Phase 1a trials with no drug-related adverse events. Additionally, we outline fundamental work leading to discovery of the analgesic and inflammation-resolving CYP450 branch of the arachidonate cascade.

4.
Signal Transduct Target Ther ; 6(1): 80, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33627635

RESUMO

Chimeric antigen receptor-based T-cell immunotherapy is a promising strategy for treatment of hematological malignant tumors; however, its efficacy towards solid cancer remains challenging. We therefore focused on developing nanobody-based CAR-T cells that treat the solid tumor. CD105 expression is upregulated on neoangiogenic endothelial and cancer cells. CD105 has been developed as a drug target. Here we show the generation of a CD105-specific nanobody, an anti-human CD105 CAR-T cells, by inserting the sequences for anti-CD105 nanobody-linked standard cassette genes into AAVS1 site using CRISPR/Cas9 technology. Co-culture with CD105+ target cells led to the activation of anti-CD105 CAR-T cells that displayed the typically activated cytotoxic T-cell characters, ability to proliferate, the production of pro-inflammatory cytokines, and the specific killing efficacy against CD105+ target cells in vitro. The in vivo treatment with anti-CD105 CAR-T cells significantly inhibited the growth of implanted CD105+ tumors, reduced tumor weight, and prolonged the survival time of tumor-bearing NOD/SCID mice. Nanobody-based CAR-T cells can therefore function as an antitumor agent in human tumor xenograft models. Our findings determined that the strategy of nanobody-based CAR-T cells engineered by CRISPR/Cas9 system has a certain potential to treat solid tumor through targeting CD105 antigen.

6.
Food Chem ; 347: 129024, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461115

RESUMO

Herein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye. Notably, the grayscale values decreases with increasing the concentrations of triazophos, and the color change weakened gradually. The detection range was in between 0.05 and 10 ng/mL and the minimum detection limit was set at 0.04 ng/mL. Percent recovery calculated from spiked water and apple samples ranged between 55.4 and 107.8% with relative standard deviations (RSDs) of 12.4-24.9%. It has therefore been shown that this protocol provides a new insight for rapid detection of small molecule pesticides in various matrices.

7.
J Nanobiotechnology ; 19(1): 27, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468141

RESUMO

BACKGROUND: Magnetic nanoparticles such as magnetosomes modified with antibodies allow a high probability of their interaction with targets of interest. Magnetosomes biomineralized by magnetotactic bacteria are in homogeneous nanoscale size and have crystallographic structure, and high thermal and colloidal stability. Camelidae derived nanobodies (Nbs) are small in size, thermal stable, highly water soluble, easy to produce, and fusible with magnetosomes. We aimed to functionalize Nb-magnetosomes for the analysis of the insecticide fipronil. RESULTS: Three recombinant magnetotactic bacteria (CF, CF+ , and CFFF) biomineralizing magnetosomes with different abundance of Nbs displayed on the surface were constructed. Compared to magnetosomes from the wild type Magnetospirillum gryphiswaldense MSR-1, all of the Nb-magnetosomes biosynthesized by strains CF, CF+ , and CFFF showed a detectable level of binding capability to fipronil-horseradish peroxidase (H2-HRP), but none of them recognized free fipronil. The Nb-magnetosomes from CFFF were oxidized with H2O2 or a glutathione mixture consisting of reduced glutathione and oxidized glutathione in vitro and their binding affinity to H2-HRP was decreased, whereas that to free fipronil was enhanced. The magnetosomes treated with the glutathione mixture were employed to develop an enzyme-linked immunosorbent assay for the detection of fipronil in water samples, with average recoveries in a range of 78-101%. CONCLUSIONS: The economical and environmental-friendly Nb-magnetosomes biomineralized by the bacterial strain MSR-1 can be potentially applied to nanobody-based immunoassays for the detection of fipronil or nanobody-based assays in general.

8.
Sci Total Environ ; 753: 141950, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32906044

RESUMO

2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, is a small organic chemical pollutant in the environment. To develop a nanobody-based immunoassay for monitoring trace levels of 2,4-D, a step-wise strategy for the generation of nanobodies highly specific against this small chemical was employed. Firstly, we synthesized three novel haptens mimicking 2,4-D and assessed their influence on the sensitivity and specificity of the existing antibody-based assay. Polyclonal antibodies (pAb) from rabbits showed good sensitivity and moderate specificity for 2,4-D, pAb from llama based on selected haptens showed similar performance when compared to those from rabbits. Secondly, nanobodies derived from llama were generated for 2,4-D by an effective procedure, including serum monitoring and one-step library construction. One nanobody, NB3-9, exhibited good sensitivity against 2,4-D (IC50 = 29.2 ng/mL) had better specificity than the rabbit pAb#1518, with no cross-reactivities against the 2,4-D analogs tested. Thirdly, one-step fluorescent enzyme immunoassay (FLEIA) for 2,4-D based on a nanobody-alkaline phosphatase (AP) fusion was developed with IC50 of 1.9 ng/mL and a linear range of 0.4-8.6 ng/mL. Environmental water samples were analyzed by FLEIA and LC-MS/MS for comparison, and the results were consistent between both methods. Therefore, the proposed step-wise strategy from hapten design to nanobody-AP fusion production was successfully conducted, and the resulting nanobody based FLEIA was demonstrated as a convenient tool to monitor 2,4-D residuals in the environment.


Assuntos
Herbicidas , Água , Ácido 2,4-Diclorofenoxiacético , Animais , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Herbicidas/análise , Coelhos , Espectrometria de Massas em Tandem
9.
Food Chem ; 337: 127780, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799164

RESUMO

To determine malachite green (MG) and its major metabolite, leucomalachite green (LMG) residual levels in tilapia fish, chemiluminescent enzyme immunoassay (CLEIA) was developed based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein. At first, VH and VL gene sequences were cloned from hybridoma cell lines secreting monoclonal antibody against LMG, and then thoroughly by database-assisted sequence analysis. Finally, the productive VH and VL were assembled to an intact scFv sequence and engineered to produce scFv-AP fusion protein. The fusion protein was further identified as a bifunctional reagent for immunoassay, then a sensitive one-step CLEIA against LMG was developed with a half-maximal inhibitory concentration (IC50) and limit of detection (LOD) of 1.3 and 0.04 ng/mL, respectively. The validation results of this novel competitive CLEIA was in line with those obtained by classical HPLC method for determination of total MG in spiked and field incurred samples.


Assuntos
Produtos Pesqueiros/análise , Técnicas Imunoenzimáticas/métodos , Corantes de Rosanilina/análise , Tilápia , Fosfatase Alcalina/genética , Animais , Anticorpos Monoclonais , Resíduos de Drogas/análise , Hibridomas , Luminescência , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única/genética
10.
J Med Chem ; 64(1): 184-215, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33369424

RESUMO

Soluble epoxide hydrolase (sEH) is an α/ß hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.

11.
Sci Transl Med ; 12(573)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298560

RESUMO

Neuroinflammation has been increasingly recognized to play a critical role in Alzheimer's disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH). We report that sEH is predominantly expressed in astrocytes and is elevated in postmortem brain tissue from patients with AD and in the 5xFAD ß amyloid mouse model of AD. The amount of sEH expressed in AD mouse brains correlated with a reduction in brain EpFA concentrations. Using a specific small-molecule sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report that TPPU treatment protected wild-type mice against LPS-induced inflammation in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation. This was associated with reduced ß amyloid pathology and improved synaptic integrity and cognitive function on two behavioral tests. TPPU treatment correlated with an increase in EpFA concentrations in the brains of 5xFAD mice, demonstrating brain penetration and target engagement of this small molecule. These findings support further investigation of TPPU as a potential therapeutic agent for the treatment of AD.

12.
J Mol Cell Cardiol ; 154: 80-91, 2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33378686

RESUMO

Obesity-driven cardiac lipid accumulation can progress to lipotoxic cardiomyopathy. Soluble epoxide hydrolase (sEH) is the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), which have biological activity of regulating lipid metabolism. The current study explores the unknown role of sEH deficiency in lipotoxic cardiomyopathy and its underlying mechanism. Wild-type and Ephx2 knock out (sEH KO) C57BL/6 J mice were fed with high-fat diet (HFD) for 24 weeks to induce lipotoxic cardiomyopathy animal models. Palmitic acid (PA) was utilized to induce lipotoxicity to cardiomyocytes for in vitro study. We found sEH KO, independent of plasma lipid and blood pressures, significantly attenuated HFD-induced myocardial lipid accumulation and cardiac dysfunction in vivo. HFD-induced lipotoxic cardiomyopathy and dysfunction of adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin complex (AMPK-mTORC) signaling mediated lipid autophagy in heart were restored by sEH KO. In primary neonatal mouse cardiomyocytes, both sEH KO and sEH substrate EETs plus sEH inhibitor AUDA treatments attenuated PA-induced lipid accumulation. These effects were blocked by inhibition of AMPK or autophagy. The outcomes were supported by the results that sEH KO and EETs plus AUDA rescued HFD- and PA-induced impairment of autophagy upstream signaling of AMPK-mTORC, respectively. These findings revealed that sEH deficiency played an important role in attenuating myocardial lipid accumulation and provided new insights into treating lipotoxic cardiomyopathy. Regulation of autophagy via AMPK-mTORC signaling pathway is one of the underlying mechanisms.

13.
J Nat Prod ; 83(12): 3689-3697, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320645

RESUMO

Lepidium meyenii (maca), a plant indigenous to the Peruvian Andes, recently has been utilized globally for claimed health or recreational benefits. The search for natural products that inhibit soluble epoxide hydrolase (sEH), with therapeutically relevant potencies and concentrations, led to the present study on bioactive amide secondary metabolites found in L. meyenii, the macamides. Based on known and suspected macamides, 19 possible macamides were synthesized and characterized. The majority of these amides displayed excellent inhibitory potency (IC50 ≈ 20-300 nM) toward the recombinant mouse, rat, and human sEH. Quantitative analysis of commercial maca products revealed that certain products contain known macamides (1-5, 8-12) at therapeutically relevant total concentrations (≥3.29 mg/g of root), while the inhibitory potency of L. meyenii extracts directly correlates with the sum of concentration/IC50 ratios of macamides present. Considering both its in vitro efficacy and high abundance in commercial products, N-benzyl-linoleamide (4) was identified as a particularly relevant macamide that can be utilized for in vivo studies. Following oral administration in the rat, compound 4 not only displayed acceptable pharmacokinetic characteristics but effectively reduced lipopolysaccharide-induced inflammatory pain. Inhibition of sEH by macamides provides a plausible biological mechanism of action to account for several beneficial effects previously observed with L. meyenii treatments.

14.
Nutrients ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126566

RESUMO

Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.

15.
Front Vet Sci ; 7: 580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005645

RESUMO

The veterinary pharmacopeia available to treat pain and inflammation is limited in number, target of action and efficacy. Inhibitors of soluble epoxide hydrolase (sEH) are a new class of anti-inflammatory, pro-resolving and analgesic drugs being tested in humans that have demonstrated efficacy in laboratory animals. They block the hydrolysis, and thus, increase endogenous concentrations of analgesic and anti-inflammatory signaling molecules called epoxy-fatty acids. Here, we screened a library of 2,300 inhibitors of the sEH human against partially purified feline, canine and equine hepatic sEH to identify inhibitors that are broadly potent among species. Six very potent sEH inhibitors (IC50 < 1 nM for each enzyme tested) were identified. Their microsomal stability was then measured in hepatic extracts from cat, dog and horse, as well as their solubility in solvents suitable for the formulation of drugs. The trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB, 1,728) appears to be the best compromise between stability and potency across species. Thus, it was selected for further testing in veterinary clinical trials of pain and inflammation in animals.

16.
Bioorg Med Chem ; 28(22): 115735, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-33007552

RESUMO

Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33068774

RESUMO

BACKGROUND & AIMS: Alcohol-associated liver disease (ALD) is a significant cause of liver-related morbidity and mortality worldwide and with limited therapies. Soluble epoxide hydrolase (sEH; Ephx2) is a largely cytosolic enzyme that is highly expressed in the liver and is implicated in hepatic function, but its role in ALD has heretofore remained uncharted. METHODS: To decipher the role of hepatic sEH in ALD, we generated mice with liver-specific sEH disruption (Alb-Cre; Ephx2fl/fl). Alb-Cre; Ephx2fl/fl and control (Ephx2fl/fl) mice were subjected to an ethanol challenge using the chronic plus binge model of ALD and hepatic injury, inflammation, and steatosis evaluated under pair- and ethanol-fed states. Additionally, we investigated the capacity of pharmacological inhibition of sEH in the chronic plus binge mouse model. RESULTS: We observed elevation of hepatic sEH in mice upon ethanol consumption, suggesting that dysregulated hepatic sEH expression might be involved in ALD. Alb-Cre; Ephx2fl/fl mice presented efficient deletion of hepatic sEH with the corresponding attenuation in the sEH activity and alteration in the lipid epoxide/diol ratio. Consistently, hepatic sEH deficiency ameliorated ethanol-induced hepatic injury, inflammation, and steatosis. Additionally, targeted metabolomics identified lipid mediators that were significantly impacted by hepatic sEH deficiency. Moreover, hepatic sEH deficiency was associated with a significant attenuation of ethanol-induced hepatic endoplasmic reticulum and oxidative stress. Notably, pharmacological inhibition of sEH recapitulated the effects of hepatic sEH deficiency and abrogated injury, inflammation, and steatosis caused by ethanol feeding. CONCLUSIONS: These findings elucidated a role for sEH in ALD and validated a pharmacological inhibitor of this enzyme in a preclinical mouse model as a potential therapeutic approach.

18.
J Clin Pharmacol ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078430

RESUMO

Pharmacological target-mediated drug disposition (TMDD) represents a special source of nonlinear pharmacokinetics, and its occurrence in large-molecule compounds has been well recognized because numerous protein drugs have been reported to have TMDD due to specific binding to their pharmacological targets. Although TMDD can also happen in small-molecule compounds, it has been largely overlooked. In this mini-review, we summarize the occurrence of TMDD that we discovered recently in a series of small-molecule soluble epoxide hydrolase (sEH) inhibitors. Our journey started with an accidental discovery of target-mediated kinetics of 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), a potent sEH inhibitor, in a pilot clinical study. To confirm what we observed in humans, we conducted a series of mechanism experiments in animals, including pharmacokinetic experiments using sEH knockout mice as well as in vivo displacement experiments with co-administration of another potent sEH inhibitor. Our mechanism studies confirmed that the TMDD of TPPU is due to its pharmacological target sEH. We further expanded our evaluation to various other sEH inhibitors and found that TMDD is a class effect of this group of small-molecule sEH inhibitors. In addition to summarizing the occurrence of TMDD in sEH inhibitors, in this mini-review we also highlighted the importance of recognizing TMDD of small-molecule compounds and its impact in clinical development as well as using pharmacometric modeling in facilitating quantitative understanding of TMDD.

19.
Mol Pharmacol ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109687

RESUMO

Tetramethylenedisulfotetramine (TETS) is a so-called "caged" convulsant, that is responsible for thousands of accidental and malicious poisonings. Similar to the widely used GABAA antagonist picrotoxinin, TETS has been proposed to bind to the non-competitive antagonist (NCA) site in the pore of the gamma-aminobutyric acid (GABA) receptor channel. However, the TETS binding site has never been experimentally mapped, and we here set out to gain atomistic level insights into how TETS inhibits the human α2ß3γ2 GABAA receptor. Using the Rosetta molecular modeling suite, we generated three homology models of the α2ß3γ2 receptor in the open, desensitized and closed/resting state. Three different ligand docking algorithms (RosettaLigand, Glide and Swissdock) identified two possible TETS binding sites in the channel pore. Using a combination of site-directed mutagenesis, electrophysiology and modeling to probe both sites, we demonstrate that TETS binds at the T6' ring in the closed/resting state model, where it shows perfect space-complementarity and is forming hydrogen bonds or making hydrophobic interactions with all five pore-lining threonine residues of the pentameric receptor. Mutating T6' in either the α2 or ß3 subunit reduces the IC50 of TETS by ~700-fold in whole-cell patch-clamp experiments. TETS is thus interacting at the non-competitive antagonist (NCA) site in the pore of the GABAA receptor, at a location that is overlapping but not identical to the picrotoxinin binding site. Significance Statement Our study identifies the binding site of the highly toxic convulsant TETS, which is classified as a threat agent by the World Health Organization. Using a combination of homology protein modeling, ligand docking, site-directed mutagenesis and electrophysiology we show that TETS is binding in the pore of the α2ß3γ2 GABAA receptor at the so-called T6' ring, where five threonine residues line the permeation pathway of the pentameric receptor channel.

20.
Nat Chem ; 12(10): 906-913, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32868886

RESUMO

Drug candidates that form covalent linkages with their target proteins have been underexplored compared with the conventional counterparts that modulate biological function by reversibly binding to proteins, in part due to concerns about off-target reactivity. However, toxicity linked to off-target reactivity can be minimized by using latent electrophiles that only become activated towards covalent bond formation on binding a specific protein. Here we study sulfuramidimidoyl fluorides, a class of weak electrophiles that undergo sulfur(VI) fluoride exchange chemistry. We show that equilibrium binding of a sulfuramidimidoyl fluoride to a protein can allow nucleophilic attack by a specific amino acid side chain, which leads to conjugate formation. We incubated small molecules, each bearing a sulfuramidimidoyl fluoride electrophile, with human cell lysate, and the protein conjugates formed were identified by affinity chromatography-mass spectrometry. This inverse drug discovery approach identified a compound that covalently binds to and irreversibly inhibits the activity of poly(ADP-ribose) polymerase 1, an important anticancer target in living cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...