Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Zhongguo Gu Shang ; 33(4): 375-8, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32351095

RESUMO

OBJECTIVE: To observe the clinical effect of elastic intramedullary nail in minimally invasive treatment of floating knee injury in children. METHODS: From January 2009 to September 2017, 11 children with floating knee injury were treated with one-off open reduction and elastic intramedullary nail or external fixator fixation, including 7 males and 4 females, aged 5.0 to 11.0 years, with an average age of 8.3 years. The treatment results were evaluated according to karlstrom's standard. RESULTS: Eleven patients were followed up for 8 to 48 months, with an average of 28 months. All the fractures healed at one time, and there were no complications such as nonunion, malunion and serious dysfunction of knee joint. The length of the affected limb in 2 cases was 1.2 to 1.5 cm longer than that in the opposite side without shortening. According to Karlstrom scoring standard, 8 cases were excellent, 1 case was good and 2 cases were middle. CONCLUSION: Elastic intramedullary nail minimally invasive treatment of floating knee injury in children is a safe and effective treatment, which can effectively reduce the fracture and promote bone healing, which is conducive to early functional recovery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32361630

RESUMO

Ibotenic acid (IBA) is an amino acid and muscimol (MUS) is the decarboxyl derivative of IBA. They are mushroom neurotoxins with high polarity and low molecular weight. Only one transition (159->113 for IBA and 115->98 for MUS) can be found when directly measured by high performance liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Therefore, the identification and quantification of trace amount of the toxins in biomaterial are difficult. A highly sensitive and accurate analytical method for IBA and MUS in plasma was developed by LC-MS/MS with the application of bimolecular dansylation and internal standard calibration. Acetonitrile was used for protein precipitation and for toxin extraction from plasma. The toxins and internal standards (L-tyrosine-13C9,15N for IBA and tyramine-d4 for MUS) were derivatized with dansyl chloride (DNSCl). The reaction conditions of the bimolecular dansylation were optimized and the fragmentation pathways of the derivatives in MS/MS were studied. Method validation was carried out according to the Bioanalytical Method Validation Guidance for Industry (FDA, USA, 2018). The limits of detection for IBA and MUS in plasma were 0.3 ng mL-1 and 0.1 ng mL-1, respectively. The linear ranges in plasma were 1-500 ng mL-1 and 1-200 ng mL-1 with the correlation coefficients of 0.998 and 0.999 for IBA and MUS, respectively. The recoveries at three spiked levels were 90.7-111.4% with relative standard deviations (RSDs) of 6.4-10.3% for IBA and the results were 85.1-94.2% with RSDs of 5.0-8.9% for MUS. The toxin levels in patients' plasma samples under different poisoning degree were presented.

3.
Proc Biol Sci ; 287(1926): 20200470, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32370674

RESUMO

The cuticle of ecdysozoans (Panarthropoda, Scalidophora, Nematoida) is secreted by underlying epidermal cells and renewed via ecdysis. We explore here the relationship between epidermis and external cuticular ornament in stem-group scalidophorans from the early Cambrian of China (Kuanchuanpu Formation; ca 535 Ma) that had two types of microscopic polygonal cuticular networks with either straight or microfolded boundaries. Detailed comparisons with modern scalidophorans (priapulids) indicate that these networks faithfully replicate the cell boundaries of the epidermis. This suggests that the cuticle of early scalidophorans formed through the fusion between patches of extracellular material secreted by epidermal cells, as observed in various groups of present-day ecdysozoans, including arthropods. Key genetic, biochemical and mechanical processes associated with ecdysis and cuticle formation seem to have appeared very early (at least not later than 535 Ma) in the evolution of ecdysozoans. Microfolded reticulation is likely to be a mechanical response to absorbing contraction exerted by underlying muscles. The polygonal reticulation in early and extant ecdysozoans is clearly a by-product of the epidermal cell pavement and interacted with the sedimentary environment.

4.
Physiol Genomics ; 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32437232

RESUMO

Precision medicine requires the translation of basic biological understanding to medical insights, mainly applied to characterization of each unique patient. In many clinical settings, this requires tools that can be broadly used to identify pathology and risks. Patients often present to the intensive care unit with broad phenotypes, including multiple organ dysfunction syndrome (MODS) resulting from infection, trauma, or other disease processes. Etiology and outcomes are unique to individuals, making it difficult to cohort patients with MODS, but presenting a prime target for testing/developing tools for precision medicine. Using multi-time point whole blood (cellular/acellular) total transcriptomics in 27 patients, we highlight the promise of simultaneously mapping viral/bacterial load, cell composition, tissue damage biomarkers, balance between syndromic biology vs. environmental response, and unique biological insights in each patient using a single platform measurement. Integration of a transcriptome workflow yielded unexpected insights into the complex interplay between host genetics and viral/bacterial specific mechanisms, highlighted by a unique case of virally induced genetics (VIG) within one of these 27 patients. The power of RNAseq to study unique patient biology while investigating environmental contributions can be a critical tool moving forward for translational sciences applied to precision medicine.

5.
Environ Res ; 187: 109682, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32450427

RESUMO

The titanium dioxide nanoparticles (n-TiO2) could enhance the bioavailability and toxicity of the coexisted organic toxicants in aquatic phase. Parental co-exposure to n-TiO2 and bisphenol A (BPA) could generate developmental neurotoxicity in unexposed zebrafish offspring. However, it remains unexplored regarding the developmental neurotoxicity in larvae fish after co-exposure during the early developmental stage. In present study, fertilized zebrafish eggs were exposed to TiO2 nanoparticles (100 µg/L), BPA (1, 4 and 20 µg/L) or their binary mixtures until 6 days post fertilization (dpf). No significant change was observed in hatching, malformation, survival and weight of the larvae among all groups. However, n-TiO2 significantly increased the body burden of BPA in the 4 and 20 µg/L co-exposure groups, depressed expression of neurodevelopment marker genes (α1-tubulin, mbp and syn2a) as well as the locomotor behavior. The current results indicate that n-TiO2 could strengthen the developmental neurotoxicity and inactive locomotion in co-exposed zebrafish larvae by promoting the bioaccumulation and bioavailability of BPA, which highlighted the similar toxic risks of developmental neurotoxicity after co-exposure at early developmental stage to that of the parental co-exposure.

6.
Dent Mater J ; 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461510

RESUMO

This study was evaluating how three desensitizing toothpastes used at home influence the effect associated with desensitizing agents after application in the clinic. Fifty dentine disks measure it permeability and 32 dentine disks with similar permeability levels were selected. Following Dental desensitizer treatment, dentine disks were randomly divided into three subgroups (n=10) that received applications of three toothpastes, respectively. The permeability (Lp) of each specimen was measured after each treatment. One specimen was selected from each group for scanning electron microscopy (SEM) observation. After each treatment, the Lp values decreased significantly for each group (p<0.05) and either completely or partially blocked the dentine tubules upon SEM observation. However, no significant differences in Lp values were observed amongst subgroups (p>0.05). After using the Dental desensitizer, Sensodyne, Crest and Colgate desensitizing toothpastes both can continued to reduce the permeability of the dentine disk, and no significant differences were found amongst them.

7.
Stem Cell Res Ther ; 11(1): 171, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381074

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is characterized by joint inflammation and damage to the cartilage and bone in collagen-induced arthritis (CIA). Mesenchymal stem cells (MSCs) can improve articular symptoms and reduce bone erosion in CIA rats; however, the underlying mechanism remains unknown. This study aimed to investigate the mechanism underlying MSC-induced improvement of bone destruction in CIA. METHODS: Wistar rats were divided into a normal group, CIA control group, MTX intervention group, and BMSC intervention group, each comprising 8 rats. Serum RANKL, OPG, and CXCL10 levels of all groups were determined via flow cytometry after 42 days of interventions. RANKL, OPG, TRAF6, CXCL10, and CXCR3 were detected on the synovial membrane via immunohistochemistry, and their relative mRNA levels were determined via RT-PCR analysis. BMSCs were labeled with GFP and administered to CIA rats via the tail vein. At different time points, the distribution of implanted GFP-MSCs in synovial tissues was observed using a fluorescence microscope, and the potential of GFP-MSCs to differentiate into chondrocytes was assessed via immunofluorescence analysis. RESULTS: BMSC transplantation improved joint inflammation and inhibited bone destruction in CIA rats. BMSCs inhibited the expression of serum CXCL10 and CXCL10 and CXCR3 expression at the synovial membrane. Moreover, protein and mRNA expression analyses revealed that BMSCs potentially regulated RANKL/OPG expression levels in the serum and synovial tissue. Upon implantation into CIA rats, GFP-MSCs were traced in the joints. GFP-positive cells were observed in the cartilage tissue from day 11 and until 42 days after transplantation. Anti-type II collagen/GFP double-positive cells were observed in the articular cartilage (especially damaged cartilage) upon immunofluorescence staining of anti-type II collagen. CONCLUSIONS: BMSCs improve bone destruction in CIA by inhibiting the CXCL10/CXCR3 chemotactic axis, regulating the RANKL/OPG ratio, and directly differentiating into chondrocytes.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32447514

RESUMO

To enhance specific or total sophorolipids (SLs) production by Starmerella bombicola for specific application, mutant library consisting of 106 mutants from 7 batches was constructed via atmospheric and room-temperature plasma (ARTP). When compared to the wild strain, 11, 36 and 12 mutants performed increases over 30% in lactonic, acidic or total SLs production. Genetic stability investigation showed that 8, 7, and 4 mutants could maintain the improved SLs production capacity. Mutants of A6-9 and A2-8 were selected out for enhanced specific SLs and total SLs production in fed-batch cultivation in flask. Without optimization, A6-9 obtained the highest reported lactonic SLs production of 51.95 g/l and A2-8 performed comparable acidic and total SLs production of 68.75 g/l and 100.33 g/l with all the reported stains. The structural composition of the obtained SLs was analyzed by HPLC and LC/MS, and the results confirmed the enhancement of SLs and certain SL components. These mutants would be important in industrial applications because the production and purification costs of SLs could be greatly reduced. Besides, the acquisition of these mutants also provided materials for the investigation of regulation mechanism of SLs biosynthesis for further genetic engineering of S. bombicola. Furthermore, critical micelle concentration (CMC), minimum surface tension (STmin) and hydrophilic-lipophilic balance (HLB) of the SLs obtained from the wild and mutant strains were also examined and compared. These results demonstrated the feasibility of obtaining SLs with different properties from different strains and the high efficiency of mutation breeding of S. bombicola by ARTP.

9.
Sci Adv ; 6(18): eaaz3376, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426476

RESUMO

Trade-offs play a crucial role in the evolution of life-history strategies of extant organisms by shaping traits such as growth pattern, reproductive investment, and lifespan. One important trade-off is between offspring number and energy (nutrition, parental care, etc.) allocated to individual offspring. Exceptional Cambrian fossils allowed us to trace the earliest evidence of trade-offs in arthropod reproduction. †Chuandianella ovata, from the early Cambrian Chengjiang biota of China, brooded numerous (≤100 per clutch), small (Ø, ~0.5 mm) eggs under carapace flaps. The closely related †Waptia fieldensis, from the middle Cambrian Burgess Shale of Canada, also brooded young, but carried fewer (≤ 26 per clutch), larger (Ø, ~2.0 mm) eggs. The notable differences in clutch/egg sizes between these two species suggest an evolutionary trade-off between quantity and quality of offspring. The shift toward fewer, larger eggs might be an adaptive response to marine ecosystem changes through the early-middle Cambrian. We hypothesize that reproductive trade-offs might have facilitated the evolutionary success of early arthropods.

10.
Int J Oncol ; 56(4): 921-931, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32319556

RESUMO

Continuous human papillomavirus (HPV) infection is a critical cause of cervical lesions; however, the specific mechanism is currently not clear. E6 is one of the most important oncoproteins associated with HPV, which regulates synthases in the production of prostaglandin E2 (PGE2). Notably, PGE2 has been reported to be upregulated in cervical lesions. An insufficient number of mature dendritic cells (DCs), which is unable to cause an effective immune response, is an important cause of cervical lesions. Therefore, this study explored the possible causes of HPV16­positive cervical lesions by identifying the relationship between E6, PGE2 and DCs. Firstly, the distribution and status of DCs in clinical biopsy specimens and animal models were analyzed with immunohistochemistry and flow cytometry, which demonstrated that the migratory ability of DCs was inhibited in HPV16­positive cervical lesions. Furthermore, using immunohistochemistry, western blotting and ELISA, it was revealed that as the degree of cervical lesions increased, the expression of PGE2 and its synthases increased. Subsequently, as determined using Transwell and 3D migration assays, it was revealed that a high concentration of PGE2 inhibited the migration of DCs, which may explain the phenomenon observed in cervical lesions. Notably, E6 was identified to regulate PGE2 expression. The in vivo experiments indicated that E6 may increase the expression levels of PGE2 in cervical lesions, which could eventually induce inhibition of the migration of DCs. In conclusion, the present study suggested that E6 regulated overproduction of PGE2, which may induce inhibition of DC migration in HPV16­positive cervical lesions.

11.
Asia Pac J Clin Nutr ; 29(1): 175-182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32229457

RESUMO

BACKGROUND AND OBJECTIVES: The association between circulating vitamin D and liver cancer risk has been controversial on the basis of epidemiological studies. The aim of this study was to quantitatively evaluate this association with prospective studies. METHODS AND STUDY DESIGN: A systematic literature search was implemented in PubMed and Scopus databases up to June 2019. Using a random-effects model, the multivariate-adjusted relative risks (RRs) with corresponding 95% confidence interval (CI) were pooled for the highest versus lowest category. Trend estimation was conducted with a two-stage dose-response meta-analysis. RESULTS: Six independent prospective studies (992 liver cancer events and 60,811 participants) were included for data synthesis. The summary estimate showed that a higher circulating vitamin D was associated with lower risk of liver cancer (Summary RR=0.78; 95% CI: 0.63, 0.95; I2=53.6%, p=0.035). Dose-response analysis indicated that liver cancer was associated with 8% (95% CI: 0.89, 0.95) lower risk with a 10 nmol/L increment of circulating vitamin D concentration. CONCLUSIONS: The present study provides substantial evidence that a higher concentration of circulating vitamin D would have conferred protection against liver cancer.

12.
FEMS Microbiol Ecol ; 96(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304321

RESUMO

The attachment of rumen microbes to feed particles is critical to feed fermentation, degradation and digestion. However, the extent to which the physicochemical properties of feeds influence the colonization by rumen microbes is still unclear. We hypothesized that rumen microbial communities may have differential preferences for attachments to feeds with varying lignocellulose properties. To this end, the structure and composition of microbial communities attached to six common forages with different lignocellulosic compositions were analyzed following in situ rumen incubation in male Taleshi cattle. The results showed that differences in lignocellulosic compositions significantly affected the inter-sample diversity of forage-attached microbial communities in the first 24 h of rumen incubation, during which the highest dry matter degradation was achieved. However, extension of the incubation to 96 h resulted in the development of more uniform microbial communities across the forages. Fibrobacteres were significantly overrepresented in the bacterial communities attached to the forages with the highest neutral detergent fiber contents. Ruminococcus tended to attach to the forages with low acid detergent lignin contents. The extent of dry matter fermentation was significantly correlated with the populations of Fibrobacteraceae, unclassified Bacteroidales, Ruminococcaceae and Spirochaetacea. Our findings suggested that lignocellulosic compositions, and more specifically the cellulose components, significantly affected the microbial attachment to and thus the final digestion of the forages.

13.
Chemosphere ; 249: 126536, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217413

RESUMO

This study investigated the influences of titanium dioxide nanoparticles (n-TiO2) on the thyroid endocrine disruption and neurobehavioral defects induced by pentachlorophenol (PCP) in zebrafish (Danio rerio). Embryos (2 h post-fertilization) were exposed to PCP (0, 3, 10, and 30 µg/L) or in combination with n-TiO2 (0.1 mg/L) until 6 days post-fertilization. The results showed that n-TiO2 alone did not affect thyroid hormones levels or transcriptions of related genes. Exposure to PCP significantly decreased thyroid hormone thyroxine (T4) content, thyroid stimulating hormone (TSH) level and transcription of thyroglobulin (tg), but significantly increased 3,5,3'-triiodothyronine (T3) level and upregulation of deiodinase 2 (dio2). In comparison, the co-exposure with n-TiO2 significantly reduced the content of T3 by depressing the potential targets, tg and dio2. For neurotoxicity, the single and co-exposure resulted in similar effects with significant downregulation of neurodevelopment-related genes (ELAV like RNA Binding Protein 3, elavl3; Growth associated protein-43, gap43; α-tubulin) and inhibited locomotor activity. The results indicated that the presence of n-TiO2 significantly enhanced the PCP-induced thyroid endocrine disruption but not the neurobehavioral defects in zebrafish larvae.


Assuntos
Disruptores Endócrinos/toxicidade , Pentaclorofenol/toxicidade , Peixe-Zebra/fisiologia , Animais , Sistema Endócrino/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas/toxicidade , Pentaclorofenol/metabolismo , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Titânio/toxicidade , Tri-Iodotironina/metabolismo , Peixe-Zebra/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32129534

RESUMO

An unprecedented Mn(I)-catalyzed selective hydroarylation and hydroalkenylation of unsaturated amides with commercially available organic boronic acids is reported. Alkenyl boronic acids have been successfully employed for the first time in Mn(I)-catalyzed carbon-carbon bond formation. A wide array of ß-alkenylated amide products can be obtained in moderate to good yields, which offers practical access to five- and six-membered lactams. This protocol has predictable regio- and chemoselectivity, excellent functional group compatibility and ease of operation in air, representing a significant step-forward towards manganese-catalyzed C-C coupling.

16.
ACS Appl Mater Interfaces ; 12(13): 14884-14904, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167740

RESUMO

Low drug payload and lack of tumor-targeting for chemodynamic therapy (CDT) result in an insufficient reactive oxygen species (ROS) generation, which seriously hinders its further clinical application. Therefore, how to improve the drug payload and tumor targeting for amplification of ROS and combine it with chemotherapy has been a huge challenge in CDT. Herein, methotrexate (MTX), gadolinium (Gd), and artesunate (ASA) were used as theranostic building blocks to be coordinately assembled into tumor-specific endogenous FeII-activated and magnetic resonance imaging (MRI)-guided self-targeting carrier-free nanoplatforms (NPs) for amplification of ROS and enhanced chemodynamic chemotherapy. The obtained ASA-MTX-GdIII NPs exhibited extremely high drug payload (∼96 wt %), excellent physiological stability, long circulating ability (half-time: ∼12 h), and outstanding tumor accumulation. Moreover, ASA-MTX-GdIII NPs could be specifically uptaken by tumor cells via folate (FA) receptors and subsequently be disassembled via lysosomal acidity-induced coordination breakage, resulting in drug burst release. Most strikingly, the produced ASA could be catalyzed by tumor-specific overexpressed endogenous FeII ions to generate sufficient ROS for enhancing the main chemodynamic efficacy, which could exert a synergistic effect with the assistant chemotherapy of MTX. Interestingly, ASA-MTX-GdIII NPs caused a lower ROS generation and toxicity on normal cell lines that seldom expressed endogenous FeII ions. Under MRI guidance with assistance of self-targeting, significantly superior synergistic tumor therapy was performed on FA receptor-overexpressed tumor-bearing mice with a higher ROS generation and an almost complete elimination of tumor. This work highlights ASA-MTX-GdIII NPs as an efficient chemodynamic-chemotherapeutic agent for MRI imaging and tumor theranostics.

17.
Bioresour Technol ; 307: 123200, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32222689

RESUMO

Increasing attention has been paid to the production of high value-added products from lignocellulosic biomass. This study aims to valorize corncob, utilizing it as feedstock for a multi-biorefinery framework, using gluconic acid in the pretreatment. In attempts to maximize yield of xylooligosaccharides, corncob was first subjected to hydrolysis by gluconic acid using response surface methodology, from which the maximum xylooligosaccharides yield of 56.2% was achieved using 0.6 mol/L gluconic acid at 154 °C for 47 min. Results indicated that gluconic acid was an effective solvent for xylooligosaccharides production: a total of 180 g of xylooligosaccharides was obtained from 1 kg corncob as a result of hydrolysis. Moreover, 86.3% conversion of cellulose was achieved from enzymatic hydrolysis of gluconic acid-treated corncob at 10% solids loading. This study presents a strategy for valorizing corncob using it to produce xylooligosaccharides and glucose, which should pave the way for valorizing other agriculture wastes.


Assuntos
Glucose , Zea mays , Gluconatos , Glucuronatos , Hidrólise , Oligossacarídeos
18.
Biomed Pharmacother ; 126: 109786, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32113052

RESUMO

Ischemic stroke is a serious threat to human life and health, which is often accompanied by cerebral ischemia-reperfusion (I/R) injury in clinic. Ischemic postconditioning (IPostC) is a short period of mild non-fatal ischemia in the early stage of cerebral I/R injury. However, there are few reports about the protective effect of IPostC. In the present study, we investigated the neuroprotective effect of IPostC in a mice model of ischemia induced by the middle cerebral artery occlusion (MCAO). MicroRNA-124(miR-124) is a small RNA highly expressed in the brain. Several studies have shown that miR-124 is significantly decreased in IPostC. Therefore, we hypothesize that IPostC may play an important role by downregulating the expression of miR-124. Mice were treated with cerebral I/R and IPostC treatment on the basis of MCAO. The results showed that IPostC significantly reduced neurobehavioral deficits and decreased brain infarct volume. Moreover, we also found that inhibiting miR-124 effectively reduced neurons/cells apoptosis in vivo and vitro. In addition, western blot analysis of apoptosis-related proteins and PI3K/Akt2 signaling pathway proteins showed that downregulation of miR-124 significantly decreased the expression of Caspase-3 and BAX, and increased the expression of anti-apoptotic protein Bcl-2. Inhibition of miR-124 also increase PI3K/Akt/mTOR signaling pathway, thus inhibiting cell apoptosis and autophagy. However, overexpression of miR-124 weakens the protective effect of IPostC. These observations suggest that IPostC exerts its neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by miR-124.

19.
J Immunother Cancer ; 8(1)2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32209603

RESUMO

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.

20.
Acta Crystallogr C Struct Chem ; 76(Pt 2): 148-158, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022709

RESUMO

Two new metal-organic frameworks (MOFs), namely, three-dimensional poly[diaquabis{µ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}bis(µ2-glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4-mbix)2(H2O)2]·H2O}n, (I), and two-dimensional poly[[{µ2-1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene}(µ2-glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4-mbix)]·4H2O}n (II), have been synthesized hydrothermally using glutarate (Glu2-) mixed with 1,4-bis[(2-methyl-1H-imidazol-1-yl)methyl]benzene (1,4-mbix), and characterized by single-crystal X-ray diffraction, IR and UV-Vis spectroscopy, powder X-ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF (I) shows a 4-connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF (II) displays a two-dimensional 44-sql network with one-dimensional water chains penetrating the grids along the c direction. The solid-state photoluminescence analysis of (II) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72- ions in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA