Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.416
Filtrar
1.
World J Mens Health ; 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35021315

RESUMO

PURPOSE: To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. MATERIALS AND METHODS: Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. RESULTS: We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). CONCLUSIONS: Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.

2.
Glia ; 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35019164

RESUMO

Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.

3.
Investig Clin Urol ; 63(1): 63-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983124

RESUMO

PURPOSE: To investigate the risk of symptomatic urolithiasis requiring surgical treatment according to obesity and metabolic health status using a nationwide dataset of the Korean population. MATERIALS AND METHODS: Of the 5,300,646 persons who underwent health examinations between the year 2009 and 2016, within one year after the health examination, 35,137 patients who underwent surgical treatment for urolithiasis were enrolled. Participants were classified as "obese" or "non-obese" using a body mass index (BMI) cutoff of 25 kg/m². People who developed ≥1 metabolic disease component in the index year were considered "metabolically unhealthy", while those with none were considered "metabolically healthy". RESULTS: Out of 34,330 participants excluding 843 missing, 16,509 (48.1%), 4,320 (12.6%), 6,456 (18.8%), and 7,045 (20.5%) subjects were classified into the metabolically healthy non-obese (MHNO), metabolically unhealthy non-obese (MUNO), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO) group, respectively. Mean BMI was 22.1±1.9 kg/m², 22.9±1.6 kg/m², 26.9±1.8 kg/m², and 27.9±2.4 kg/m² respectively. After adjusting the age and sex, the subjects in the MUNO group had an HR (95% CI) of 1.192 (1.120-1.268), those in the MHO group, 1.242 (1.183-1.305), and those in the MUO group, 1.341 (1.278-1.407) for either extracorporeal shockwave lithotripsy or surgery, compared to those in the MHNO group. CONCLUSIONS: Metabolically healthy, obese individuals have a higher risk of developing symptomatic urolithiasis than non-obese, unhealthy, but have a lower risk than obese, unhealthy. It suggests that metabolic health and obesity have collaborative effects, independently affecting the development of symptomatic urinary stone diseases.

4.
Mol Ther Nucleic Acids ; 27: 175-183, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976436

RESUMO

Precise genome editing of human pluripotent stem cells (hPSCs) is crucial not only for basic science but also for biomedical applications such as ex vivo stem cell therapy and genetic disease modeling. However, hPSCs have unique cellular properties compared to somatic cells. For instance, hPSCs are extremely susceptible to DNA damage, and therefore Cas9-mediated DNA double-strand breaks (DSB) induce p53-dependent cell death, resulting in low Cas9 editing efficiency. Unlike Cas9 nucleases, base editors including cytosine base editor (CBE) and adenine base editor (ABE) can efficiently substitute single nucleotides without generating DSBs at target sites. Here, we found that the editing efficiency of CBE was significantly lower than that of ABE in human embryonic stem cells (hESCs), which are associated with high expression of DNA glycosylases, the key component of the base excision repair pathway. Sequential depletion of DNA glycosylases revealed that high expression of uracil DNA glycosylase (UNG) not only resulted in low editing efficiency but also affected CBE product purity (i.e., C to T) in hESCs. Therefore, additional suppression of UNG via transient knockdown would also improve C to T base substitutions in hESCs. These data suggest that the unique cellular characteristics of hPSCs could determine the efficiency of precise genome editing.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35064283

RESUMO

PURPOSE: This study investigated the incidence and risk factors of preoperative deep venous thrombosis (DVT) after an acute hip fracture. METHODS: We searched the electronic medical record system at our hospital for patients who received treatment for femoral neck (FN), intertrochanteric (IT), or subtrochanteric (ST) fractures between January 1, 2016, and December 31, 2020. DVT was diagnosed using venous compression ultrasonography. Univariate and multivariate regression analyses were performed to identify risk factors for preoperative DVT. RESULTS: Out of 512 consecutively admitted patients with hip fracture, 293 (median age, 77 years; 174 females) were included in the final analysis after application of the exclusion criteria. There were 162 FN, 122 IT, and 9 ST fractures. Preoperative DVT occurred in 58 patients. Patients over 80 years of age had a significantly higher incidence of preoperative DVT than those aged < 65 years (P = 0.014). Preoperative DVT incidence following extracapsular fracture was significantly higher than that after intracapsular fracture (27.5% versus 13.6%, P = 0.003). Multivariate regression analysis revealed that advanced age (odds ratio [OR] 1.027, P = 0.026) and extracapsular fracture (OR = 2.149, P = 0.013) were associated with a significantly higher risk of preoperative DVT development. While the serum D-dimer level was abnormally elevated in 99% of the patients, this was not a significant factor in the final multivariate analysis (P = 0.562). CONCLUSION: The incidence of preoperative DVT after acute hip fracture in this Chinese cohort was approximately 20%. Increased age and extracapsular fracture were independent risk factors for preoperative DVT following acute hip fracture.

6.
Small Methods ; 6(1): e2100900, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041280

RESUMO

Wearable piezoresistive sensors are being developed as electronic skins (E-skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade-off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low-cost, scalable, and high-performance piezoresistive sensor is developed with high sensitivity (0.144 kPa-1 ), extensive sensing range ( 0.1-15 kPa), fast response time (less than 150 ms), and excellent long-term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self-wrapped copper nanowire network. The developed nanowire-based spinosum microstructured FTEs are amenable to wearable electronics applications.

7.
Adv Healthc Mater ; : e2102054, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34990081

RESUMO

Laponite is a clay-based material composed of synthetic disc-shaped crystalline nanoparticles with a large and highly ionic surface area. These characteristics enable the intercalation and dissolution of biomolecules in Laponite-based drug delivery systems. Furthermore, Laponite's innate physicochemical properties and architecture enable the development of tunable pH-responsive drug delivery systems. Laponite's coagulation capacity and cation exchangeability, determine its exchange capabilities, drug encapsulation efficiency, and release profile. These parameters have been exploited to design highly controlled and efficacious drug delivery platforms for sustained drug release. In this review, we give an overview of how the properties and specific interactions of various Laponite-polymer composite and drug moieties, have been leveraged to design efficient delivery of a number of therapeutics. This article is protected by copyright. All rights reserved.

8.
PeerJ ; 10: e12744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047236

RESUMO

To date, 19 species of spiny lobsters from the genus Panulirus have been discovered, of which only P. japonicus, P. penicilatus, P. stimpsoni, and P. versicolor have been documented in South Korean waters. In this study, we aimed to identify and update the current list of spiny lobster species that inhabit South Korean waters based on the morphological features and the phylogenetic profile of cytochrome oxidase I (COI) of mitochondrial DNA (mtDNA). Spiny lobsters were collected from the southern and eastern coasts of Jeju Island, South Korea. Phylogenetic analyses were performed using neighbor-joining (NJ), maximum likelihood (ML), and Bayesian inference (BI) methods. The ML tree was used to determine the spiny lobster lineages, thereby clustering the 17 specimens collected in this study into clades A, B, C, and D, which were reciprocally monophyletic with P. japonicus, P. homarus homarus, P. longipes, and P. stimpsoni, respectively. These clades were also supported by morphological examinations. Interestingly, morphological variations, including the connected pleural and transverse groove at the third abdominal somite, were observed in four specimens that were genetically confirmed as P. japonicus. This finding is novel within the P. japonicus taxonomical reports. Additionally, this study updates the documentation of spiny lobsters inhabiting South Korean waters as P. longipes and P. homarus homarus were recorded for the first time in this region.

9.
J Ethnopharmacol ; 283: 114709, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34626777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhuyu pill (ZYP), an effective prescription of traditional Chinese medicine, is composed of Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley and has shown potential anticholestatic effects. However, its mechanism of action in treating cholestasis remains unclear. Since post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation, it is promising to explore this in relation to ZYP and cholestasis. AIM OF THE STUDY: To confirm the anticholestatic effect of ZYP and to explore its potential biological mechanism. MATERIALS AND METHODS: In this study, a cholestasis rat model was induced by α-naphthyl-isothiocyanate (ANIT, 50 mg/kg) and treated with ZYP (low dose: 0.6 g/kg, high dose: 1.2 g/kg). Serum biochemistry indices and liver histopathology were used to evaluate the model and efficacy, and miRNA sequencing was used to measure differences in miRNA expression in the liver between the control, model, low-dose ZYP, and high-dose ZYP groups. To verify the accuracy of sequencing results and explore the potential anti-cholestasis mechanism of ZYP, RT-PCR was used to identify differentially expressed miRNAs and their target genes. RESULTS: Both high- and low-dose ZYP exhibited significant anticholestatic effects, with the high-dose showing better effects than low-dose ZYP. Additionally, four differentially expressed miRNAs, rno-miR-147, rno-miR-20b-5p, rno-miR-29b-3p, and rno-miR-3586-3p, were found to be upregulated in cholestasis and downregulated after ZYP intervention. Eight target genes of the above miRNAs, including ABCG8, CLOCK, PLEC, SLC4A2, NEB, ADAMTS12, TTN and FAM174B were inhibited in cholestatic rats, exhibiting up-regulated expression tendencies after ZYP intervention, and the expression tendencies were significant negatively correlated with serum biochemical indices. CONCLUSIONS: ZYP can significantly reduce liver biochemical indices and improve liver tissue damage in cholestasis rats through the regulation of miRNA expression in the liver, producing a positive regulatory effect on bile excretion-related genes.

10.
J Phys Chem Lett ; 13(1): 161-167, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34964634

RESUMO

Researchers have shown great interest in two-dimensional crystals recently, because of their thickness-dependent electronic and optical properties. We have investigated the Raman and photoluminescence spectra of free-standing monolayer and bilayer MoS2, as a function of pressure. As the enforcement of layer interaction, an electronic and a crystal phase transition were revealed at ∼6 GPa and ∼16 GPa, respectively, in bilayer MoS2, while no phase transition in the monolayer is observed. The electronic phase transition at ∼6 GPa is supposed to be a direct interband changing to an indirect Λ-K interband transition, and the new structure shown at ∼16 GPa is not metallized and supposed to be a transformation from stacking faults due to layer sliding like 2Hc to 2Ha. The different pressure-induced features of monolayer MoS2, compared with bilayer MoS2, can help to get a better understanding about the importance of interlayer interaction on modifying the optical properties of MoS2 and other fundamental understanding of 2D materials.

11.
Eur J Med Chem ; 227: 113950, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34731761

RESUMO

Ergosterol exert the important function in maintaining the fluidity and osmotic pressure of fungal cells, and its key biosynthesis enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) displayed the obvious synergistic effects. Therefore, we expected to discover the novel antifungal compounds with dual-target (SE/CYP51) inhibitory activity. In the progress, we screened the different kinds of potent fragments based on the dual-target (CYP51, SE) features, and the method of fragment-based drug discovery (FBDD) was used to guide the construction of three different series of benzodioxane compounds. Subsequently, their chemical structures were synthesized and evaluated. These compounds displayed the obvious biological activity against the pathogenic fungal strains. Notably, target compounds 10a-2 and 22a-2 possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125-2.0 µg/mL) and the activity against drug-resistant strains (MIC50, 0.5-2.0 µg/mL). Preliminary mechanism studies have confirmed that these compounds effectively inhibited the dual-target (SE/CYP51) activity, they could cause fungal rupture and death by blocking the bio-synthetic pathway of ergosterol. Further experiments discovered that compounds 10a-2 and 22a-2 also maintained a certain of anti-fungal effect in vivo. In summary, this study not only provided the new dual-target drug design strategy and method, but also discover the potential antifungal compounds.

12.
Food Chem ; 371: 131385, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808778

RESUMO

The combination of multiple dietary polyphenols may have synergistic beneficial effects. And the beneficial effects can be further improved by the encapsulation of proteins. The interactions of procyanidin B2 (PB2) and/or dihydromyricetin (DMY) with ß-lactoglobulin (ß-LG) were investigated using multi-spectroscopic techniques and molecular docking. The structural change of ß-LG in the presence of PB2 and/or DMY was demonstrated by dynamic light scattering, Fourier transform infrared spectroscopy and circular dichroism spectroscopy. Response surface analysis was used to optimize the synergistic antioxidant activity between PB2 and DMY. Besides, the antioxidant activity, stability, in vitro digestion and cytotoxicity of PB2 and DMY in the binary and ternary systems were investigated. These studies will elucidate the interaction mechanism of PB2 and/or DMY with ß-LG. The research results can provide theoretical support for the development of functional foods and beverages with synergistic activity, improved stability and bioaccessibility, thereby promoting human health and preventing diseases.


Assuntos
Lactoglobulinas , Polifenóis , Antioxidantes , Digestão , Humanos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Nanoscale ; 14(2): 350-360, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908077

RESUMO

Injectable shear-thinning biomaterials (STBs) have attracted significant attention because of their efficient and localized delivery of cells as well as various molecules ranging from growth factors to drugs. Recently, electrostatic interaction-based STBs, including gelatin/LAPONITE® nanocomposites, have been developed through a simple assembly process and show outstanding shear-thinning properties and injectability. However, the ability of different compositions of gelatin and LAPONITE® to modulate doxorubicin (DOX) delivery at different pH values to enhance the effectiveness of topical skin cancer treatment is still unclear. Here, we fabricated injectable STBs using gelatin and LAPONITE® to investigate the influence of LAPONITE®/gelatin ratio on mechanical characteristics, capacity for DOX release in response to different pH values, and cytotoxicity toward malignant melanoma. The release profile analysis of various compositions of DOX-loaded STBs under different pH conditions revealed that lower amounts of LAPONITE® (6NC25) led to higher pH-responsiveness capable of achieving a localized, controlled, and sustained release of DOX in an acidic tumor microenvironment. Moreover, we showed that 6NC25 had a lower storage modulus and required lower injection forces compared to those with higher LAPONITE® ratios. Furthermore, DOX delivery analysis in vitro and in vivo demonstrated that DOX-loaded 6NC25 could efficiently target subcutaneous malignant tumors via DOX-induced cell death and growth restriction.


Assuntos
Melanoma , Nanopartículas , Materiais Biocompatíveis , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Gelatina , Humanos , Concentração de Íons de Hidrogênio , Melanoma/tratamento farmacológico , Microambiente Tumoral
14.
Ann Palliat Med ; 10(11): 11415-11429, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34872267

RESUMO

BACKGROUND: The etiology and pathogenesis of cough are complex. As a Chinese patent medicine that has been on the market, ErtongKe (ETK) granules have a good effect in treating acute and chronic cough in children. The purpose of this research was to determine the bioactive components and possible action mechanisms of ETK in the treatment of cough using an integrated network pharmacology method. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss target prediction databases were used to screen the potential components and associated targets of ETK. The Genecards database was then used to gather targets interacting with cough. An analysis of the signaling pathways associated with ETK for cough treatment was carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis methods. Cytoscape 3.8.1 was used to design the protein-protein interaction (PPI) and compound-target-pathway networks. Finally, the important genes and active components of ETK were confirmed using Auto Dock vina and Discovery studio software. RESULTS: Total 242 active components of ETK were screened, 1,173 potential targets related to the ingredients and 4,400 targets related to cough were collected separately. Moreover, 600 candidate targets and 39 signaling pathways were determined. We also screened out the following core components, including tuberostemonone, quercetin, kaempferol, praeruptorin E, stigmasterol, oroxylin A, and other potentially active ingredients. At the same time, 8 core targets, including JUN, PIK3CA, PIK3R1, MAPK14, EGFR, SRC, AKT1, and MAPK1, and 20 key pathways, including the cAMP signaling pathway, calcium signaling pathway, and PI3K-Akt signaling pathway among others, were also selected. All the 8 core targets were verified by molecular docking. CONCLUSIONS: This research established that ETK exerts anti-cough activity by modulating several targets and pathways through multiple components. Additionally, the pooled results shed light on ETK compounds being investigated as potential antitussives.

15.
J Med Chem ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852203

RESUMO

Metastasis is a major contributor of death in cancer patients, and there is an urgent need for effective treatments of metastatic malignancies. Herein, ketoprofen (KP) and loxoprofen (LP) platinum(IV) complexes with antiproliferative and antimetastatic properties were designed and prepared by integrating chemotherapy and immunotherapy targeting cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and programmed death ligand 1 (PD-L1), besides DNA. A mono-KP platinum(IV) complex with a cisplatin core is screened out as a candidate possessing potent anti-proliferative and anti-metastasis activities both in vitro and in vivo. It induces serious DNA damage and further leads to high expression of γ-H2AX and p53. Moreover, it promotes apoptosis of tumor cells through mitochondrial apoptotic pathway Bcl-2/Bax/caspase3. Then, COX-2, MMP-9, NLRP3, and caspase1 as pivotal enzymes igniting inflammation and metastasis are obviously inhibited. Notably, it significantly improves immune response through restraining the expression of PD-L1 to increase CD3+ and CD8+ T infiltrating cells in tumor tissues.

16.
J Med Virol ; 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873729

RESUMO

As an alternative mechanism for cap-dependent (m7GpppN) translation, IRES-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server. This article is protected by copyright. All rights reserved.

17.
Vet Sci ; 8(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34941834

RESUMO

A 6-year-old female Maltese dog presented with a cervical mass without pain. The tumor was surrounded by a thick fibrous tissue and consisted of an osteoid matrix with osteoblasts and two distinct areas: a mesenchymal cell-rich lesion with numerous multinucleated giant cells and a chondroid matrix-rich lesion. The tumor cells exhibited heterogeneous protein expression, including a positive expression of vimentin, cytokeratin, RANKL, CRLR, SOX9, and collagen 2, and was diagnosed as extraskeletal osteosarcoma. Despite its malignancy, the dog showed no sign of recurrence or metastasis three months after the resection. Further analysis of the tumor cells revealed a high expression of proliferation- and metastasis-related biomarkers in the absence of angiogenesis-related biomarkers, suggesting that the lack of angiogenesis and the elevated tumor-associated fibrosis resulted in a hypoxic tumor microenvironment and prevented metastasis.

18.
Front Pharmacol ; 12: 784187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955856

RESUMO

Hyperglycemia-induced apoptosis and oxidative stress injury are thought to play important roles in the pathogenesis of diabetic nephropathy (DN). Attenuating high glucose (HG)-induced renal tubular epithelial cell injury has become a potential approach to ameliorate DN. In recent years, burdock fructooligosaccharide (BFO), a water-soluble inulin-type fructooligosaccharide extracted from burdock root, has been shown to have a wide range of pharmacological activities, including antiviral, anti-inflammatory, and hypolipidemic activities. However, the role and mechanism of BFO in rat renal tubular epithelial cells (NRK-52E cells) have rarely been investigated. The present study investigated the protective effect of BFO on HG-induced damage in NRK-52E cells. BFO could protect NRK-52E cells against the reduced cell viability and significantly increased apoptosis rate induced by HG. These anti-oxidative stress effects of BFO were related to the significant inhibition of the production of reactive oxygen species, stabilization of mitochondrial membrane potential, and increased antioxidant (superoxide dismutase and catalase) activities. Furthermore, BFO increased the expression of Nrf2, HO-1, and Bcl-2 and decreased the expression of Bax. In conclusion, these findings suggest that BFO protects NRK-52E cells against HG-induced damage by inhibiting apoptosis and oxidative stress through the Nrf2/HO-1 signaling pathway.

19.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 138-142, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933720

RESUMO

Dysfunctional uterine bleeding is menstrual bleeding in abnormal volume, duration, or time, and it is a common problem in women. A wide range of drug therapies, with varying efficacy, is available for women with dysfunctional uterine bleeding. The use of herbal and traditional medicine is one of the ways to treat this disease, which has fewer side effects than chemical drugs. On the other hand, these medicines have less effect on treatment than chemical drugs. Therefore, increasing their effectiveness in the treatment of diseases has always been important. For this purpose, in this study, a comparison was done between direct use and PLGA nanocapsules containing Tiaojing Zhixue, in the treatment of dysfunctional uterine bleeding. First, PLGA nanocapsules containing Tiaojing Zhixue were synthesized by the electrospray technique. Then 80 women with dysfunctional uterine bleeding were treated with this medicine. These people were divided into two groups of 40 people. The first group was treated with 20mg of Tiaojing Zhixue and the other group was treated with PLGA nanocapsules containing Tiaojing Zhixue for eight months. The duration and frequency of bleeding from one month before the start of treatment and during the eight months after the start of treatment (second, fourth, and eighth month) were assessed in two groups. The two groups were homogeneous in terms of mean frequency of bleeding and mean duration of bleeding before starting treatment. The positive response in the PLGA nanocapsules treatment group (75%) was higher than the direct use drug treatment group (42.5%) (P < 0.01). The rate of side effects was the same in each group. Due to the effectiveness of PLGA nanocapsules in the treatment of dysfunctional uterine bleeding and the lack of side effects, it can be considered as an alternative medicine for the treatment of this disorder.

20.
Transbound Emerg Dis ; 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931455

RESUMO

Senecavirus A (SVA), a newly emergent picornavirus correlated with sudden neonatal mortality and vesicular lesions in pigs, has had a considerable impact on the global pig farming industry. Timely and dependable detection of SVA is helpful in preventing the further spread of this pathogenic virus. In the current study, a real-time fluorescent reverse transcription recombinase-aided amplification (rRT-RAA) assay, which targets the most conserved region within the VP2 gene of SVA, was developed and evaluated for SVA detection. The detection limit for this assay was tested to be 1.185 50% tissue culture infective dose (TCID50 ) of SVA RNA per reaction at a 95% confidence interval, which is comparable to that of a previously published rRT-PCR assay for SVA. The testing results of the rRT-RAA assay were very reproducible and repeatable, with inter- and intra-assay coefficient of variation values less than 7.0%. In addition, the established rRT-RAA assay displayed excellent specificity for SVA detection without cross-reaction with other clinically important swine pathogenic viruses. The diagnostic performance of rRT-RAA was evaluated using 189 clinical swine samples, which were detected in parallel using the reference rRT-PCR assay. The results showed that 146 and 151 samples tested positive for SVA by rRT-RAA and rRT-PCR, respectively. The overall agreement between both assays was 97.4% (184/189) with a kappa value of 0.927 (p < .001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2   = 0.9192, p < .0001). Taken together, our newly established rRT-RAA assay is a powerful and time-saving diagnostic tool for SVA detection in clinical samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...