RESUMO
It is interesting and meaningful to explore fluorescent probes for novel rapid detection methods. In this study, we discovered a natural fluorescence probe, bovine serum albumin (BSA), for the assay of ascorbic acid (AA). Due to clusterization-triggered emission (CTE), BSA has the character of clusteroluminescence. AA shows an obvious fluorescence quenching effect on BSA, and the quenching effect increases with increasing concentrations of AA. After optimization, a method for the rapid detection of AA is established by the AA-caused fluorescence quenching effect. The fluorescence quenching effect reaches saturation after 5 min of incubation time and the fluorescence is stable within more than one hour, suggesting a rapid and stable fluorescence response. Moreover, the proposed assay method shows good selectivity and a wide linear range. To further study the mechanisms of AA-caused fluorescence quenching effect, some thermodynamic parameters are calculated. The main intermolecular force between BSA and AA is electrostatic, presumably leading to the inhibiting CTE process of BSA. This method also shows acceptable reliability for the real vegetable sample assay. In summary, this work will not only provide an assay strategy for AA, but also open an avenue for the application expansion of CTE effect of natural biomacromolecules.
Assuntos
Ácido Ascórbico , Verduras , Ácido Ascórbico/análise , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Soroalbumina Bovina , Limite de DetecçãoRESUMO
Converting solid wastes into new materials for wastewater decontamination is a feasible "one stone, three birds" strategy to achieve sustainable value-added utilization of resources and minimize waste emissions, but significant challenges remain. In response to this, we proposed an efficient "mineral gene reconstruction" method to synchronously transform coal gangue (CG) into a green porous silicate adsorbent without using any harmful chemicals (i.e., surfactants, organic solvents). The one of the synthesized adsorbents with a high specific surface area (582.28 m2/g) and multimetallic active centres shows outstanding adsorption performance (adsorption capacities: 168.92 mg/g for Cd(II), 234.19 mg/g for methylene blue (MB); removal rate: 99.04% for Cd(II) and 99.9% for MB). The adsorbent can also reach a high removal rate of 99.05%â¼99.46% and 89.23%â¼99.32% for MB and Cd(II) in real water samples (i.e., Yangtze River, Yellow River, seawater and tap water), respectively. After 5 adsorption-desorption cycles, the adsorption efficiency remained above 90%. The adsorbents mainly adsorbed Cd(II) by electrostatic attraction, surface complexation and partial ion exchange and MB by electrostatic and hydrogen bonding interactions. This study provides a sustainable and promising platform for developing a new-generation cost-efficient adsorbent from waste for clean water production.
RESUMO
Acinetobacter baumannii is a critical biofilm-forming pathogen that has presented great challenges in the clinic due to multidrug resistance. Thus, new methods of intervention are needed to control biofilm-associated infections. In this study, among three tested Lactobacillus species, Lactobacillus rhamnosus showed significant antimaturation and antiadherence effects against A. baumannii biofilm. Lactic acid (LA) and acetic acid (AA) were the most effective antibiofilm biosurfactants (BSs) produced by L. rhamnosus. This antibiofilm phenomenon produced by LA and AA was due to the strong bactericidal effect, which worked from very early time points, as determined by colony enumeration and confocal laser scanning microscope. The cell destruction of A. baumannii appeared in both the cell envelope and cytoplasm. A discontinuous cell envelope, the leakage of cell contents, and the increased extracellular activity of ATPase demonstrated the disruption of the cell membrane by LA and AA. These effects also demonstrated the occurrence of protein lysis. In addition, bacterial DNA interacted with and was damaged by LA and AA, resulting in significantly reduced expression of biofilm and DNA repair genes. The results highlight the possibility and importance of using probiotics in clinical prevention. Probiotics can be utilized as novel biocides to block and decrease biofilm formation and microbial contamination in medical equipment and during the treatment of infections. IMPORTANCE A. baumannii biofilm is a significant virulence factor that causes the biofilm colonization of invasive illnesses. Rising bacterial resistance to synthetic antimicrobials has prompted researchers to look at natural alternatives, such as probiotics and their derivatives. In this study, L. rhamnosus and its BSs (LA and AA) demonstrated remarkable antibiofilm and antimicrobial characteristics, with a significant inhibitory effect on A. baumannii. These effects were achieved by several mechanisms, including the disruption of the cell envelope membrane, protein lysis, reduced expression of biofilm-related genes, and destruction of bacterial DNA. The results provide support for the possibility of using probiotics and their derivatives in the clinical prevention and therapy of A. baumannii infections.
RESUMO
Background: Sarcopenia leads to complications (infections, hepatic encephalopathy and ascites) and poor overall survival in patients with cirrhosis, in which the phenotypic presentation is loss of muscle mass. This study aimed to reveal the metabolic profile and identify potential biomarkers in cirrhotic patients with hepatitis B virus and muscle mass loss. Method: Twenty decompensated cirrhotic patients with HBV and muscle mass loss were designated Group S; 20 decompensated cirrhotic patients with HBV and normal muscle mass were designated Group NS; and 20 healthy people were designated Group H. Muscle mass loss was defined as the skeletal muscle mass index less than 46.96 cm2/m2 for males and less than 32.46 cm2/m2 for females. Gas chromatography-mass spectrometry was used to explore the distinct metabolites and pathways in the three groups. Results: Thirty-seven metabolic products and 25 associated metabolic pathways were significantly different in the Group S patients from Group NS patients. Strong predictive value of 11 metabolites (inosine-5'-monophosphate, phosphoglycolic acid, D-fructose-6-phosphate, N-acetylglutamate, pyrophosphate, trehalose-6-phosphate, fumaric acid, citrulline, creatinine, (r)-3-hydroxybutyric acid, and 2-ketobutyric acid) were selected as potential biomarkers in Group S patients compared with Group NS patients. Two pathways may be associated with loss of muscle mass in patients with liver cirrhosis: amino acid metabolism and central carbon metabolism in cancer. Conclusion: Seventy differential metabolites were identified in patients who have liver cirrhosis and loss of muscle mass compared with patients who have cirrhosis and normal muscle mass. Certain biomarkers might distinguish between muscle mass loss and normal muscle mass in HBV-related cirrhosis patients.
RESUMO
The high incidence of Avian pathogenic Escherichia coli (APEC) in poultry has resulted in significant economic losses. It has become necessary to find alternatives to antibiotics due to the alarming rise in antibiotic resistance. Phage therapy has shown promising results in numerous studies. In the current study, a lytic phage vB_EcoM_CE1 (short for CE1) against Escherichia coli (E. coli) was isolated from broiler feces, showing a relatively wide host range and lysing 56.9% (33/58) of high pathogenic strains of APEC. According to morphological observations and phylogenetic analysis, phage CE1 belongs to the Tequatrovirus genus, Straboviridae family, containing an icosahedral capsid (80 ~ 100 nm in diameter) and a retractable tail (120 nm in length). This phage was stable below 60°C for 1 h over the pH range of 4 to 10. Whole-genome sequencing revealed that phage CE1 contained a linear double-stranded DNA genome spanning 167,955 bp with a GC content of 35.4%. A total of 271 ORFs and 8 tRNAs were identified. There was no evidence of virulence genes, drug-resistance genes, or lysogeny genes in the genome. The in vitro test showed high bactericidal activity of phage CE1 against E. coli at a wide range of MOIs, and good air and water disinfectant properties. Phage CE1 showed perfect protection against broilers challenged with APEC strain in vivo. This study provides some basic information for further research into treating colibacillosis, or killing E. coli in breeding environments.
RESUMO
This study investigates the effect of income inequality, carbon dioxide emissions, renewable energy consumption, and economic growth on each other's in the Belt and Road initiative countries from 2002 to 2019. By using OLS, fixed effect, difference GMM, system GMM, and seemingly unrelated regression (SUR) models, the results show that income inequality and renewable energy consumption are reduced while economic growth, foreign direct investment, and financial development have an increasing effect on carbon emissions. The effect of carbon emissions and renewable energy consumption is negative, while economic growth is positive and negative for income inequality across different models. Income inequality, carbon dioxide emissions, economic growth, and foreign direct investment are negatives for renewable energy consumption. Income inequality is positive, while carbon dioxide and financial development negatively affect economic growth. The findings have considerable policy implications for the sample countries regarding income distribution, energy use, environmental quality, and enhancing economic growth. The countries should focus on acquiring renewable energy sources to increase economic growth and reduce environmental pollution.
RESUMO
Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of immune tolerance and the production of autoantibodies against nucleic acids and other nuclear antigens (Ags). B lymphocytes are important in the immunopathogenesis of SLE. Multiple receptors control abnormal B-cell activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and TLR9, in the pathophysiology of SLE has been extensively explored in recent years. When endogenous or exogenous nucleic acid ligands are recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 to activate related signalling pathways and thus govern the proliferation and differentiation of B cells. Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the interaction between them is still poorly understood. In addition, other cells can enhance TLR signalling in B cells of SLE patients by releasing cytokines that accelerate the differentiation of B cells into plasma cells. Therefore, the delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in SLE may aid the understanding of the mechanisms of SLE and provide directions for TLR-targeted therapies for SLE.
Assuntos
Lúpus Eritematoso Sistêmico , Ácidos Nucleicos , Humanos , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Linfócitos B , Diferenciação Celular , Receptores de Antígenos de Linfócitos B , Proliferação de CélulasRESUMO
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
RESUMO
Background: Only a subset of B-cell lymphoma (BCL) patients can benefit from immune checkpoint inhibitors targeting PD-1/PD-L1. Materials & methods: In the A20 model, SIRPα-Fc and anti-PD-L1 were employed to target CD47 and PD-L1 simultaneously. Flow cytometry, immunofluorescence and quantitative polymerase chain reaction were used to unravel the potential mechanisms. Results: Simultaneously targeting CD47 and PD-L1 activated CD8+ T cells with an increased release of effector molecules. Furthermore, infiltration of F4/80+iNOS+ M1 macrophages was enhanced by the dual therapy. Conclusion: Anti-CD47 therapy could sensitize BCL tumors to anti-PD-L1 therapy in a CD8+ T-cell- and M1-macrophage-dependent manner by promoting cytotoxic lymphocyte infiltration, which may provide a potential strategy for BCL treatment by simultaneously targeting CD47 and PD-L1.
Immune checkpoint inhibitors targeting PD-1/PD-L1 have become effective agents for cancer treatment. However, only a minority of patients benefit from this treatment in the clinic because of the limited response rate. Targeting CD47/SIRPα restores macrophage function and improves the response of antitumor immunity. Here, combination immunotherapy targeting CD47/SIRPα and PD-1/PD-L1 was investigated to increase the response rate and antitumor effect of PD-L1 monotherapy in B-cell lymphoma (BCL). This study broadens the application of the combination therapy and provided a promising strategy for B-cell lymphoma treatment by simultaneous targeting of PD-1/PD-L1 and CD47/SIRPα axis.
Assuntos
Linfoma de Células B , Neoplasias , Humanos , Antígeno CD47 , Linfócitos T CD8-Positivos , Imunoterapia , Linfoma de Células B/tratamento farmacológico , Macrófagos , Antígeno B7-H1/metabolismoRESUMO
In the current information age, SNSs (Social Network Sites) have been popular among young adolescents, and have also become a main manner to maintain social relationships. Against this background, based on relevant evidence, the present study aimed to examine the association between positive self-disclosure on SNSs and adolescents' friendship quality, as well as the underlying mechanism-the potential mediating role of perceived positive feedback and the moderating role of social anxiety. A sample of 1713 adolescents aged 11 to 19 was recruited to participate in this study, to complete a set of scales. Results indicated that positive self-disclosure on SNSs was positively associated with adolescents' friendship quality, and positive feedback significantly mediated the association between self-disclosure positivity and friendship quality. This mediating effect, moderated by social anxiety, could significantly moderate the mediating effect of positive feedback; specifically, compared with higher social anxiety adolescents, the association between positive self-disclosure and positive feedback was stronger among individuals with lower social anxiety. These findings may expand previous studies, with several theoretical and practical implications.
Assuntos
Revelação , Amigos , Humanos , Adolescente , Retroalimentação , Ansiedade , Rede SocialRESUMO
Two-dimensional (2D) MXenes (transition metal carbide or carbonitride) and metal-organic frameworks (MOFs) have emerged as appealing electrode materials for supercapacitors due to the advantages of each material and a 2D structure. However, a solitary MXene or MOF suffers from either inadequate redox reactive sites or low electronic conductivity and instability. Here, NiCo-MOF/MXene heterostructures are fabricated by assembling ultrathin 2D bimetallic NiCo-MOF nanosheets on exfoliated MXene nanosheets by a simple room-temperature ultrasonic method. The 2D/2D NiCo-MOF/MXene heterostructures combine the advantages of a MOF, MXene and hierarchical structure, i.e. a large surface area, a highly electrically conductive network, rapid ion diffusion and structural stability. As a result, the optimal NiCo-MOF/M10 electrode exhibits a highly improved capacitance (1176.8 F g-1vs. 653.4 F g-1) and cycle life (72.5% vs. 50.5%), compared with the pristine NiCo-MOF. Moreover, a two-electrode cell using NiCo-MOF/M10 as the cathode shows outstanding energy storage capability. This study provides an opportunity to enhance energy storage by designing 2D heterostructures.
RESUMO
Enzyme mimetics have been widely applied on H2O2 assay, but it is still challenging and interesting to realize the sensitive detection for ultra-trace H2O2. Here, an ultrasensitive Raman assay method based on novel WO3@IP6-Fe3+ enzyme mimetics with peroxidase-like activity was established. WO3 microspheres (MSs) were found to have weak peroxidase-like activity, and the combination of IP6-Fe3+ and WO3 can produce stronger activity. WO3@IP6-Fe3+ MSs showed polyhedron-like structure, uniform size, and smooth surface. Although WO3@IP6-Fe3+ enzyme mimetics have low catalytic efficiency and high absorbance background, the proposed Raman method can bypass the above problems. In Raman method, high concentration of WO3@IP6-Fe3+ can be used to overcome low catalytic efficiency without high absorbance background. Moreover, 3,3',5,5'-tetramethylbenzidine oxide has prominent characteristic Raman peak at 1608 cm-1, greatly improving the sensitivity and eliminating interference of impurities. Due to the high sensitivity and low background, Raman assay showed the ultra-low limit of detection (5.49 × 10-15 M), which was 4-7 orders of magnitude lower than other detection methods. The ultrasensitive Raman assay not only provided the possibility for the enzyme mimetics-based detection of ultra-trace H2O2, but also enable the enzyme mimetics with low activity to be applied.
Assuntos
Peróxido de Hidrogênio , Peroxidase , Peróxido de Hidrogênio/química , Peroxidase/química , Óxidos , Catálise , Biomimética , Colorimetria/métodosRESUMO
BACKGROUND: Acute myeloid leukemia (AML) is a common and lethal hematological malignant hyperplastic disease originating from hematopoietic stem cells. The purpose of this study is to obtain the key differentially expressed gene (DEG) related to the survival of AML by The Cancer Genome Atlas (TCGA) database and to verify these genes by a clinical follow-up investigation, in order to identify valuable predictive and prognostic biomarkers for early diagnosis of AML and predict the survival rates. METHODS: The RNA sequencing (RNA-Seq) data and clinical information of TCGA-LAML were downloaded from the TCGA database. After that we (1) screened the survival-related DEGs by Cox regression analysis, (2) selected the cytogenetics risk-related DEGs by DESeq2 R package, and (3) filtrated the genes in the top10 pathways of up-regulated and down-regulated of Normalization Enrichment Score (NES) by Gene Set Enrichment Analysis (GSEA). Finally, we focused the intersectional genes of above three parts as the key gene of the present study. The following Multivariate.
Assuntos
Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/genética , RNARESUMO
In this study, three new triterpenes (1-3) and fourteen known triterpenoids (4-17) were isolated from the ethanol extract of Kochiae Fructus, and their structures were elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. Among them, compounds 6, 8, and 11-17 were isolated for the first time from this plant. The screening results of the glucose uptake experiment indicated that compound 13 had a potent effect on glucose uptake in 3T3-L1 adipocytes at 20 µM. Meanwhile, compounds 3, 9 and 13 exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 23.50 ± 3.37, 4.29 ± 0.52, and 16.99 ± 2.70 µM, respectively, and their α-glucosidase inhibitory activities were reported for the first time. According to the enzyme kinetics using Lineweaver-Burk and Dixon plots, we found that compounds 3, 9 and 13 were α-glucosidase mixed-type inhibitors with Ki values of 56.86 ± 1.23, 48.88 ± 0.07 and 13.63 ± 0.42 µM, respectively. In silico molecular docking analysis showed that compounds 3 and 13 possessed superior binding capacities with α-glucosidase (3A4A AutoDock score: -4.99 and -4.63 kcal/mol). Whereas compound 9 showed +2.74 kcal/mol, which indicated compound 9 exerted the effect of inhibiting α-glucosidase activity by preferentially binding to the enzyme-substrate complex. As a result, compounds 3, 9 and 13 could have therapeutic potentials for type 2 diabetes mellitus, due to their potent hypoglycemic activities.
Assuntos
Diabetes Mellitus Tipo 2 , Triterpenos , Camundongos , Animais , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Triterpenos/farmacologia , Células 3T3-L1 , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Glucose , Adipócitos/metabolismo , Estrutura MolecularRESUMO
Intracranial germ cell tumors (GCTs) are highly heterogeneous and rare, and the recurrence of mature teratomas is uncommon. There is limited data on the systematic management of multiple recurrent tumors following total teratoma removal. Herein, we report repeated relapsing GCTs with different histological subtypes and locations after en bloc total resection of a pineal mature teratoma. A 14-year-old patient underwent total resection of a tumor in the pineal region and histopathology revealed a mature cystic teratoma. Four years later, the patient experienced a recurrence of the suprasellar tumor, which occurred several times over the next eight years. The tumor was successfully eliminated after multiple surgeries, radiotherapy and chemotherapy. By the time the paper was submitted, the patient had not had a recurrence of the tumor and was in the good physical condition and leading a normal life. Based on this case, we discussed the pathogenesis of recurrent mature teratoma and the therapeutic strategy of multiple recurrent GCTs.
RESUMO
Introduction: Asthma is primarily divided into two categories: type 2 (T2-high) and non-type 2 (T2-low). A relationship between asthma severity and vitamin D deficiency has been identified, but its impact on each asthma endotype remains unknown. Methods: We clinically examined the influence of vitamin D on patients with T2-high (n = 60) or T2-low asthma (n = 36) compared with controls (n = 40). Serum 25(OH)D levels, inflammatory cytokines and spirometry were measured. Mouse models were then used to further analyze the effects of vitamin D on both asthmatic endotypes. BALB/c mice were fed with vitamin D-deficient (LVD), -sufficient (NVD), or -supplemented diets (HVD) throughout lactation and offspring followed the same diet after weaning. Offspring were sensitized/challenged with ovalbumin (OVA) to establish "T2-high" asthma or OVA combined with ozone exposure (OVA + ozone) to induce "T2-low" asthma. Spirometry and serum, bronchoalveolar lavage fluid (BALF), and lung tissues were analyzed. Results: Serum 25(OH)D levels were decreased in asthmatic patients compared with controls. Patients with vitamin D deficiency (Lo) had varying degrees of elevation of the pro-inflammatory cytokines IL-5, IL-6, and IL-17A, decreased expression of the anti-inflammatory cytokine IL-10, and altered forced expiratory volume in the first second as a percentage of predicted value (FEV1%pred) in both asthmatic endotypes. Vitamin D status had a stronger correlation with FEV1%pred in T2-low asthma than T2-high asthma, and 25(OH)D level was only positively linked to maximal mid-expiratory flow as a percentage of predicted value (MMEF%pred) in the T2-low group. Inflammation, hyperresponsiveness, and airway resistance (RL) was increased in both asthma models compared with controls while vitamin D deficiency further increased airway inflammation and airway obstruction. These findings were particularly prominent in T2-low asthma. Discussion: The potential function and mechanisms of vitamin D and both asthma endotypes should be studied individually, and further analysis of the potential signaling pathways involved with vitamin D on T2-low asthma is warranted.
Assuntos
Obstrução das Vias Respiratórias , Asma , Ozônio , Deficiência de Vitamina D , Camundongos , Animais , Feminino , Humanos , Vitamina D , Asma/metabolismo , Citocinas , Inflamação , VitaminasRESUMO
Pollen is an important source of nutrition for bumblebees to survive, reproduce, and raise their offspring. To explore the nutritional requirements for the egg laying and hatching of queenright Bombus breviceps colonies, camellia pollen, oilseed rape pollen, apricot pollen, and mixtures of two or three types of pollen in equal proportions were used to feed the queens in this study. The results showed that the camellia pollen with a higher essential amino acid content was superior to the pollen with a lower essential amino acid content in the initial egg-laying time (p < 0.05), egg number (p < 0.05), larval ejection (p < 0.01), time of first worker emergence (p < 0.05), and the average weight of workers in the first batch (p < 0.01). It took less time for colonies under the camellia pollen and camellia-oilseed rape-apricot pollen mix treatments, both with a higher crude protein content, to reach ten workers in the colony (p < 0.01). On the contrary, the queens fed apricot pollen never laid an egg, and larvae fed oilseed rape pollen were all ejected-both pollens with a lower essential amino acid content. The results emphasize that the diet should be rationally allocated to meet the nutritional needs of local bumblebees at various stages when guiding them to lay eggs, hatch, and develop a colony.
RESUMO
Diabetic nephropathy (DN), the principal pathogeny of end-stage renal disease (ESRD), is related to metabolic disorders, chronic inflammation, and oxidative stress. It was reported that high expression of interleukin-17A (IL-17A) was intimately related to the progression of DN, and targeting IL-17A exhibited regulating effects on inflammation and autoimmunity but had only limited impact on the oxidative stress damage in DN. Recent studies showed that interleukin-22 (IL-22) could inhibit mitochondrial damage and inflammatory response. Thus, the cytokine IL-22 was first fused to anti-IL-17A antibody for endowing the antibody with the anti-hyperglycemia and anti-inflammation activity. Our study demonstrated that the fusion molecule, anti-IL17A/IL22 fusion protein, could not only lead to the increase of M1 macrophages and the decrease of M2 macrophages, further improving the immune microenvironment, but also prevent the loss of mitochondrial membrane potential by reducing the production of ROS in murine DN model. In addition, the fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways, further synergistically restraining the production of NLRP3, thus suppressing the inflammatory response and playing beneficial effect on slowing down the progression of DN. In conclusion, our findings demonstrated that the bifunctional IL-17A antibody and IL-22 fusion protein were of great benefit to DN, which highlighted a potential therapeutic strategy. KEY POINTS: ⢠Anti-IL17A/IL22 fusion protein could improve the immune microenvironment and reduce the production of ROS. ⢠Anti-IL17A/IL22 fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways and then restrain the activation of NLRP3.
RESUMO
Infections led by Acinetobacter baumannii strains are of great concern in healthcare environments due to the strong ability of the bacteria to spread through different apparatuses and develop drug resistance. Severe diseases can be caused by A. baumannii in critically ill patients, but its biological process and mechanism are not well understood. Secretion systems have recently been demonstrated to be involved in the pathogenic process, and five types of secretion systems out of the currently known six from Gram-negative bacteria have been found in A. baumannii. They can promote the fitness and pathogenesis of the bacteria by releasing a variety of effectors. Additionally, antibiotic resistance is found to be related to some types of secretion systems. In this review, we describe the genetic and structural compositions of the five secretion systems that exist in Acinetobacter. In addition, the function and molecular mechanism of each secretion system are summarized to explain how they enable these critical pathogens to overcome eukaryotic hosts and prokaryotic competitors to cause diseases.