Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 423(Pt B): 127106, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536848

RESUMO

Developing P-efficient plants helps improve P uptake from soils with low-available P and reduce environmental damage by P runoff. Here, we investigated a novel root-specific phytase PvPHY1 from As-hyperaccumulator Pteris vittata, which can efficiently utilize phytate, a recalcitrant organic phosphorus in soil. Unlike other plants, expression of PvPHY1 in P. vittata was greater in the roots than the fronds. A pure phytase with considerable activity was obtained via prokaryotic expression. Expressing PvPHY1 in tobacco (PvPHY1-Ex) enhanced its growth (2.8 to 3.5-3.9 g per plant) and increased its P accumulation by 10-50% under low- and adequate-P conditions. Further, PvPHY1-Ex tobacco showed 25-32% lower intracellular phytate and 30-56% higher inorganic P in the roots, likely due to phytase-mediated hydrolysis of phytate. Decrease of phytate levels up-regulated phosphate transporter genes (NbPht1;1, NbPht1;2 and NbPht1;6), leading to greater P and As uptake. However, As translocation to the shoots was low, probably due to competition from increased inorganic P via phytate hydrolysis. As such, PvPHY1 facilitated P uptake from soils and phytate hydrolysis in plants, thereby promoting tobacco growth. Overall, PvPHY1 from P. vittata helps better understand the novel phytase to increase soil P utilization efficiency, thereby reducing P fertilizer requirements for crop production.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/genética , Arsênio/análise , Biodegradação Ambiental , Hidrólise , Ácido Fítico , Raízes de Plantas/química , Pteris/genética , Poluentes do Solo/análise
2.
J Hazard Mater ; 424(Pt C): 127581, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34736212

RESUMO

The beneficial effects of selenium on As uptake and plant growth in As-hyperaccumulator Pteris vittata are known, but the associated mechanisms remain unclear. Here, we investigated the effects of selenate on arsenic accumulation by P. vittata under two arsenate levels. P. vittata plants were exposed to 13 (As13) or 133 µM (As133) arsenate and 5 µM selenate in 0.2-strength Hoagland solution. After 14 d of growth, plant biomass, Se and As content, As speciation, and malondialdehyde (MDA), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione (GSH and GSSG) levels were determined. The results show that selenate promoted P. vittata growth and increased As concentrations in the roots and fronds by 256% from 97 to 346 mg kg-1 and 142% from 213 to 514 mg kg-1 under As13 treatment, and by 166% from 500 to 1332 mg kg-1 and 534% from 777 to 4928 mg kg-1 under As133 treatment. In addition, selenate increased the glutathione content in P. vittata roots and fronds by 75-86% under As13 treatment and 44-45% under As133 treatment. Selenate also increased the GPX activity by 161-173%, and GR activity by 72-79% in P. vittata under As13 and As133 treatments. The HPLC-ICP-MS analysis indicated that selenate increased both AsIII and AsV levels in P. vittata, with AsIII/AsV ratio being lower in the roots and higher in the fronds, i.e., more AsIII was being translocated to the fronds. Taken together, our results suggest that, via GPX-GR mediated enhancement of GSH-GSSG cycle, selenate effectively increases plant growth and As uptake in P. vittata by improving AsV reduction in the roots and AsIII translocation from the roots to the fronds.

3.
BMC Genomics ; 22(1): 829, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789158

RESUMO

BACKGROUND: GenoLab M is a recently established next-generation sequencing platform from GeneMind Biosciences. Presently, Illumina sequencers are the globally leading sequencing platform in the next-generation sequencing market. Here, we present the first report to compare the transcriptome and LncRNA sequencing data of the GenoLab M sequencer to NovaSeq 6000 platform in various types of analysis. RESULTS: We tested 16 libraries in three species using various library kits from different companies. We compared the data quality, genes expression, alternatively spliced (AS) events, single nucleotide polymorphism (SNP), and insertions-deletions (InDel) between two sequencing platforms. The data suggested that platforms have comparable sensitivity and accuracy in terms of quantification of gene expression levels with technical compatibility. CONCLUSIONS: Genolab M is a promising next-generation sequencing platform for transcriptomics and LncRNA studies with high performance at low costs.


Assuntos
RNA Longo não Codificante , Transcriptoma , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , RNA Longo não Codificante/genética
4.
Plant Dis ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645309

RESUMO

Wheat pathogens, especially those causing powdery mildew and stripe rust, seriously threaten yield worldwide. Utilizing newly identified disease resistance genes from wheat relatives is an effective strategy to minimize disease damage. In this study, chromosome-specific molecular markers for the 3Sb and 7Sb chromosomes of Aegilops bicornis were developed using PCR-based landmark unique gene (PLUG) primers for screening wheat-Ae. bicornis progenies. Fluorescence in situ hybridization (FISH) was performed to further identify wheat-Ae. bicornis progenies using oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-(GAA)8. After establishing Ae. bicornis 3Sb and 7Sb chromosome-specific FISH markers, Holdfast (common wheat)-Ae. bicornis 3Sb addition, 7Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, 3Sb(3D) substitution, 7Sb(7A) substitution, and 7Sb(7B) substitution lines were identified by the molecular and cytological markers. Stripe rust and powdery mildew resistance, along with agronomic traits were investigated to evaluate the breeding potential of these lines. Holdfast and Holdfast-Ae. bicornis progenies were all highly resistant to stripe rust, indicating that the stripe rust resistance might derive from Holdfast. However, Holdfast-Ae. bicornis 3Sb addition, 3Sb(3A) substitution, 3Sb(3B) substitution, and 3Sb(3D) substitution lines showed high resistance to powdery mildew while Holdfast was highly susceptible, indicating that chromosome 3Sb of Ae. bicornis carries previously unknown powdery mildew resistance gene(s). Additionally, the transfer of the 3Sb chromosome from Ae. bicornis to wheat significantly increased tiller number, but chromosome 7Sb has a negative effect on agronomic traits. Therefore, wheat germplasm containing Ae. bicornis chromosome 3Sb has potential to contribute to improving powdery mildew resistance and tiller number during wheat breeding.

5.
Front Plant Sci ; 12: 708551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381484

RESUMO

Aegilops sharonensis, a wild relative of wheat, harbors diverse disease and insect resistance genes, making it a potentially excellent gene source for wheat improvement. In this study, we characterized and evaluated six wheat-A. sharonensis derivatives, which included three disomic additions, one disomic substitution + monotelosomic addition and two disomic substitution + disomic additions. A total of 51 PLUG markers were developed and used to allocate the A. sharonensis chromosomes in each of the six derivatives to Triticeae homoeologous groups. A set of cytogenetic markers specific for A. sharonensis chromosomes was established based on FISH using oligonucleotides as probes. Molecular cytogenetic marker analysis confirmed that these lines were a CS-A. sharonensis 2Ssh disomic addition, a 4Ssh disomic addition, a 4Ssh (4D) substitution + 5SshL monotelosomic addition, a 6Ssh disomic addition, a 4Ssh (4D) substitution + 6Ssh disomic addition and a 4Ssh (4D) substitution + 7Ssh disomic addition line, respectively. Disease resistance investigations showed that chromosome 7Ssh of A. sharonensis might harbor a new powdery mildew resistance gene, and therefore it has potential for use as resistance source for wheat breeding.

6.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433569

RESUMO

The major obstacles for tumor vaccine to be surmounted are the lack of versatile property and immunity-inducing effectiveness. Induced pluripotent stem cells (iPSCs) expressed various antigens the same as multiple types of tumors, providing a promising source of wide-spectrum cancer vaccines. The damaged erythrocyte membrane entrapped by spleen could be developed as antigen deliverer for enhancing acquired immunity. Here, the modified lipid materials were used to dilate erythrocyte membrane to fabricate coalescent nanovector, which not only preserved the biological characteristics of erythrocyte membrane but also remedied the defect of insufficient drug loading capacity. After wrapping iPSC protein, the nanovaccine iPSC@RBC-Mlipo exhibited obvious splenic accumulation, systemic specific antitumor immunity evocation, and effective tumor expansion and metastasis inhibition in mice. Hence, our research may provide a prospective strategy of efficient tumor vaccine for clinical practice.

7.
Food Funct ; 12(17): 7664-7675, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236362

RESUMO

The aim of this study was to investigate the immunomodulatory effect and mechanism of the glycopeptides from Paecilomyces sinensis (CPS-II) on ethanol induced ulcers in mice. In this study, histopathological evaluation (H&E staining) and the gastric ulcer score, ulcer index, total acid secretion and gastric pH value were used to determine the anti-ulcer activity. The expression levels of interleukin (IL)-6, interleukin (IL)-10 and tumor necrosis factor-α (TNF-α) were detected by ELISA. The contents of superoxide dismutase (SOD), malondialdehyde (MDA) and epidermal growth factor (PEG2) in serum were measured according to the instructions for the reagents. Western blotting was used to detect the effect of CPS-II on the MEK/ERK pathway. The results showed that CPS-II could inhibit the ulcer score and ulcer index compared with the disease control group. CPS-II could significantly increase gastric pH and decrease gastric acid secretion in mice. The ELISA analysis showed that the expression levels of IL-6 and TNF-α in the CPS-II treatment group were significantly decreased, while the expression levels of IL-10 were significantly increased in the CPS-II treatment group. In the resveratrol treatment group, the content of MDA in serum was decreased, and the level of PEG2 and the activity of SOD in serum were significantly increased, which indicated that CPS-II has immunoregulation and anti-ulcer properties. The CPS-II treatment group could reduce the expression level of miR-9-5p in gastric tissue. pEGFR had been identified as a potential target of miR-9-5p. Western blot analysis showed that CPS-II could up-regulate the relative protein expression of pEGFR/EGFR, pRaf/Raf, pMEK/MEK, pERK/ERK, and ZO-1. The results showed that CPS-II could reduce oxidative stress and inflammatory response by regulating the miR-9-5p-MEK/ERK signaling pathway, thus protecting the gastric mucosa and improving stress gastric ulcers.

8.
Ecotoxicol Environ Saf ; 220: 112411, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111661

RESUMO

This study focused on the effects of eight medicinal plant extracts on Solanum nigrum L. potential to accumulate Cd and Pb from soil. These medicinal plants were common and relatively cheap. The eight 10% water extracts were made from the peel of Citrus reticulata Blanco (PCR), fruit of Phyllanthus emblica L. (FPE), root of Pueraria Lobata (Willd.) Ohwi (RPL), rhizome of Polygonatum sibiricum Red (RPS), root of Astragalus propinquus Schischkin (RAP), bud of Hemerocallis citrina Baroni (BHC), seed of Nelumbo nucifera Gaertn (SNN) and fruit of Prunus mume (Sieb.) Sieb.etZuce (FPM). The results showed that among all exposures, the treatment with FPE resulted in the significant increase (p < 0.05) of Cd and Pb concentration in shoots and roots of S. nigrum by 32.5% and 65.2% for Cd, and 38.7% and 39.6% for Pb. The biomasses of S. nigrum in all plant extract treatments were not significantly changed (p < 0.05) compared to the control (CK). The Cd and Pb extraction rates of S. nigrum in FPE treatment were increased respectively by 60.5% and 40.5% compared to CK. Though the treatment with EDTA significantly improved (p < 0.05) the concentration of Cd and Pb of S. nigrum, the Cd and Pb masses (ug plant-1) of S. nigrum did not show any significant difference compared to the CK due to the significant decrease in the shoot (20.4%) and root (22.0%) biomasses. The chelative role of FPE might be relation with its higher polyphenolic compounds. However, not sure if the contents of polyphenolic compounds was the only differences between FPE and other additives. Thus, some unknown organic matters might also play active role. This study provided valuable information on improving the phytoremediation potential of hyperaccumulator.


Assuntos
Metais Pesados/metabolismo , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Poluentes do Solo/metabolismo , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Quelantes/química , Quelantes/farmacologia , Extratos Vegetais/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solanum nigrum/metabolismo
9.
Chemosphere ; 278: 130446, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33838411

RESUMO

Organic acids-assisted phytoremediation is a promising strategy to remove metal pollutants from the soil. However, few reports have focused on the mechanisms of organic acids promoting the uptake of heavy metals by hyperaccumulators. In this study, 5 types of organic acids, namely polybasic carboxylic acids, acidic amino acids, acidic plant growth regulators, phosphoric and gluconic acids, were comprehensively investigated the effects on the solubility of Cd and Pb in the soil along with their uptake by Cd hyperaccumulator Solanum nigrum L. The results indicated that the addition of Hydroxyethylidene-1,1-diphosphonic acid (HEDP) and d-Gluconic acid (D-GA) effectively extracted the most of acid-extractable and some of reducible and oxidizable fractions of Cd and Pb in the soil, with the extraction rates of 64.8% and 34.4% for total Cd and 53.6% and 30.0% for total Pb, respectively. HEDP and D-GA significantly increased the accumulations of Cd (57.1% and 35.0%) and Pb (43.4% and 31.9%) by S. nigrum without the inhibition of its biomass, making the great removal efficiencies of Cd (1.35% and 1.16%) and Pb (0.039% and 0.036%) from the soil. The enhanced phytoremediation efficiency of S. nigrum was due to the increase of the extractable Cd and Pb in the rhizosphere but little changes of soil pH and enzyme activities (catalase and urease). Among all of organic acids, HEDP may be an alternative to EDTA because of its characteristics of environmental friendliness and high efficiency.


Assuntos
Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Chumbo , Solo , Poluentes do Solo/análise
10.
Int J Clin Exp Pathol ; 14(1): 1-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532018

RESUMO

The aim of this study was to explore colorectal tumor-associated macrophage (TAM) biomarkers for early diagnosis and surveillance of colorectal cancer (CRC). We used bioinformatic methods to screen array expression data of CRC-related macrophages (GEO: GSE29214) to detect the differentially expressed genes (DEGs) between CRC-related macrophages and normal control cells. We found 431 DEGs in TAMs compared with the control group; 399 were up-regulated and 32 were down-regulated. A functional enrichment analysis showed that the DEGs were involved in positive regulation of the ERK1 and ERK2 cascade, cell activation involved in the immune response, cytokine-mediated signaling pathway, and receptor activity, all of which were significantly enriched. We constructed a protein-protein interaction (PPI) network to identify hub genes. We identified 10 hub genes: ITGB2, ITGAM, C3AR1, PTAFR, C3, CYBB, FCER1G, PLAU, STOM, and GPR84, in the PPI network. We verified the results using array expression data of peripheral blood mononuclear cells (GEO: GSE47756). The results showed that the expression trends of CYBB, PLAU, and STOM were consistent with those found in the GSE29214 dataset. Further verification with The Cancer Genome Atlas and Human Protein Atlas showed that the high expression of PLAU in TAMs was statistically significant (P<0.05). We concluded that PLAU may be a biomarker of CRC-associated macrophages and may have prognostic and predictive significance for clinical utility in CRC management.

11.
Food Funct ; 12(5): 1973-1982, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586729

RESUMO

Polysaccharides can be used as a potential hepatoprotective agent in the treatment of acute liver injury. However, the underlying mechanism governing how polysaccharides protect against acute liver injury induced by lipopolysaccharide/d-galactosamine (LPS/d-GalN) remains unclear. To investigate the mechanism, the anti-oxidative and anti-inflammatory action and pathways were determined. In this study, we investigated the hepatoprotective effects of Grifola frondosa polysaccharides (GFP), which are obtained from the fruiting body of Grifola frondosa, on (LPS/d-GalN)-induced liver injury in mice. Histopathological analyses showed that GFP protected against LPS/d-GalN-induced lung inflammation. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of the inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and monocyte chemoattractant protein-1 (MCP-1) were inhibited by GFP. The LPS/d-GalN-induced myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were inhibited by GFP. The levels of superoxide dismutase (SOD) and glutathione (GSH) were upregulated by GFP. The GFP-treated group showed reduced expression levels of miR-122 in liver tissue. Nrf2 has been identified as a potential target of miR-122. The western blotting results showed that GFP attenuates LPS/d-GalN-induced acute liver injury via upregulating transcription factors Nrf2, Nqo-1, and HO-1 and downregulating transcription factor Keap-1 in the Nrf2/ARE signaling pathway. In conclusion, these results indicated that GFP was highly effective in inhibiting liver injury and may be a promising potential therapeutic reagent for liver injury treatment. GFP exerts protective effects against LPS/d-GalN-induced liver injury in mice, which may be related to the regulation of the miR-122-Nrf2/ARE pathways.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Grifola/química , Fígado/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Elementos de Resposta Antioxidante/genética , Galactosamina/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
12.
Theor Appl Genet ; 134(3): 887-896, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388886

RESUMO

KEY MESSAGE: PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to the terminal region of chromosome 1RL of wild rye Secale sylvestre. The genus Secale is an important resource for wheat improvement. The Secale species are usually considered as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild species of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Secale/imunologia , Secale/microbiologia
13.
J Exp Bot ; 71(19): 5808-5822, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32725154

RESUMO

Improved inorganic phosphate (Pi) use efficiency in crops will be important for sustainable agriculture. Exploring molecular mechanisms that regulate Pi uptake could provide useful information for breeding wheat with improved Pi use efficiency. Here, a TaPHR3-A1 (Gene ID: TraesCS7A02G415800) ortholog of rice OsPHR3 that functions in transcriptional regulation of Pi signaling was cloned from wheat chromosome 7A. Ectopic expression of TaPHR3-A1 in Arabidopsis and rice produced enhanced vegetative growth and more seeds. Overexpression in transgenic rice led to increased biomass, grain number, and primary panicle branching by 61.23, 42.12, and 36.34% compared with the wild type. Transgenic wheat lines with down-regulation of TaPHR3-A1 exhibited retarded growth and root hair development at the seedling stage, and showed yield-related effects at the adult stage when grown in both low- and sufficient Pi conditions, indicating that TaPHR3-A1 positively regulated tolerance to low Pi. Introgression lines further confirmed the effect of TaPHR3-A1 in improving grain number. The Chinese wheat mini core collection and a recombinant inbred line analysis demonstrated that the favorable allele TaPHR3-A1-A associated with higher grain number was positively selected in breeding. A TaPHR3-A1-derived cleaved amplified polymorphic sequence marker effectively identified haplotype TaPHR3-A1-A. Our results suggested that TaPHR3-A1 was a functional regulatory factor for Pi uptake and provided useful information for marker-assisted selection for high yield in wheat.


Assuntos
Pão , Triticum , Fosfatos , Melhoramento Vegetal , Proteínas de Plantas , Proteínas Proto-Oncogênicas c-myb , Fatores de Transcrição/genética , Triticum/genética
14.
Front Genet ; 11: 489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477413

RESUMO

Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a devastating disease that threatens wheat production and yield worldwide. The powdery mildew resistance gene Pm21, originating from wheat wild relative Dasypyrum villosum, encodes a coiled-coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) protein and confers broad-spectrum resistance to wheat powdery mildew. In the present study, we isolated 73 Pm21 alleles from different powdery mildew-resistant D. villosum accessions, among which, 38 alleles were non-redundant. Sequence analysis identified seven minor insertion-deletion (InDel) polymorphisms and 400 single nucleotide polymorphisms (SNPs) among the 38 non-redundant Pm21 alleles. The nucleotide diversity of the LRR domain was significantly higher than those of the CC and NB-ARC domains. Further evolutionary analysis indicated that the solvent-exposed LRR residues of Pm21 alleles had undergone diversifying selection (dN/dS = 3.19734). In addition, eight LRR motifs and four amino acid sites in the LRR domain were also experienced positive selection, indicating that these motifs and sites play critical roles in resistance specificity. The phylogenetic tree showed that 38 Pm21 alleles were divided into seven classes. Classes A (including original Pm21), B and C were the major classes, including 26 alleles (68.4%). We also identified three non-functional Pm21 alleles from four susceptible homozygous D. villosum lines (DvSus-1 to DvSus-4) and two susceptible wheat-D. villosum chromosome addition lines (DA6V#1 and DA6V#3). The genetic variations of non-functional Pm21 alleles involved point mutation, deletion and insertion, respectively. The results also showed that the non-functional Pm21 alleles in the two chromosome addition lines both came from the susceptible donors of D. villosum. This study gives a new insight into the evolutionary characteristics of Pm21 alleles and discusses how to sustainably utilize Pm21 in wheat production. This study also reveals the sequence variants and origins of non-functional Pm21 alleles in D. villosum populations.

15.
Front Genet ; 11: 474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536936

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.

16.
Front Genet ; 11: 241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300355

RESUMO

Powdery mildew infection of wheat (Triticum aestivum L.), caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease that threatens yield and quality worldwide. The most effective and preferred means for the control of the disease is to identify broad-spectrum resistance genes for breeding, especially the genes derived from elite cultivars that exhibit desirable agronomic traits. Jimai 23 is a Chinese wheat cultivar with superior agronomic performance, high-quality characteristics, and effective resistance to powdery mildew at all growth stages. Genetic analysis indicated that powdery mildew resistance in Jimai 23 was mediated by a single dominant gene, tentatively designated PmJM23. Using bulked segregant RNA-Seq (BSR-Seq), a series of markers was developed and used to map PmJM23. PmJM23 was then located at the Pm2 locus on the short arm of chromosome 5D (5DS). Resistance spectrum analysis demonstrated that PmJM23 provided a broad resistance spectrum different from that of the documented Pm2 alleles, indicating that PmJM23 is most likely a new allele of Pm2. In view of these combined agronomic, quality, and resistance findings, PmJM23 is expected to be a valuable resistance gene in wheat breeding. To efficiently use PmJM23 in breeding, the closely linked markers of PmJM23 were evaluated and confirmed to be applicable for marker-assisted selection (MAS). Using these markers, a series of resistant breeding lines with high resistance and desirable agronomic performance was selected from the crosses involving PmJM23, resulting in improved powdery mildew resistance of these lines.

17.
J Hazard Mater ; 394: 122553, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222552

RESUMO

The effects of soil treatment with aqueous extracts from three hyperaccumulators on Cd and Pb accumulation by Solanum nigrum L. were determined. The stem (S-RG) and leaf extracts (L-RG) of Rorippaglobosa (Turcz.) Thell., and stem extract (S-BP) of Bidens pilosa L. significantly enhanced Cd and Pb total accumulation capacity of S. nigrum compared to control (by 44 %, 47 %, and 29 % for Cd and by 28 %, 28 % and 21 % for Pb, respectively), while EDTA caused its 9 % and 15 % decrease due to the plant biomass reduction (by 33 %). The leaching experiments reflected affinity of additives to metal mobilization in soils. The concentrations of total organic acid in S-RG, L-RG and S-BP were the highest among studied extracts, which besides the beneficial effect on the soil environment (microbe number and enzyme activities), may be partial reasons of strong promotion of S. nigrum accumulation capacity for Cd and Pb. It was shown that hyperaccumulation properties of a plant are not a prerequisite of enhancing effect of the plant-based soil additive on the metal accumulation capacity of the target living hyperaccumultor. The plant-based chelators were found to be promising candidates for EDTA and other chemicals replacement in promoting efficient and environmentally safe phytoremediation.


Assuntos
Cádmio/metabolismo , Chumbo/metabolismo , Extratos Vegetais/farmacologia , Poluentes do Solo/metabolismo , Solanum nigrum/efeitos dos fármacos , Solanum nigrum/metabolismo , Bidens/química , Biodegradação Ambiental , Ácido Edético/farmacologia , Concentração de Íons de Hidrogênio , Folhas de Planta/química , Caules de Planta/química , Rorippa/química , Solo/química
18.
Thorac Cancer ; 11(3): 612-618, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31967724

RESUMO

BACKGROUND: The aim of this study was to evaluate the effect of uniportal and three-portal VATS in lung cancer patients on the postoperative short-term quality of life (QOL). METHODS: A single-center, prospective, nonrandomized study was performed on patients who underwent uniportal or three-portal video-assisted thoracoscopic surgery (VATS) lobectomy and systemic mediastinal lymph node dissection. QOL was measured before surgery at baseline and at one, two, four, and eight weeks after the operation. The measured data of normal distribution were indicated by the mean ± standard deviation, the independent sample t-test was used among the groups, and the χ2 test was used to compare the counting. Non-normal distribution of the measurement data was carried out using the Mann-Whitney test. RESULTS: Preoperative functional areas, symptom areas and overall health scores were similar in the two groups. The physical, role, emotional and social functions and overall health status of the uniportal group were significantly higher than those of the three-portal group in postoperative time. The score of symptom field was higher in one week after operation, the score of two, four and eight weeks decreased gradually, but it was still above the preoperative level, and the fatigue and pain of the uniportal group were significantly lower than that of the three-portal group. CONCLUSION: The advantages of uniportal VATS include a shorter hospital stay, more rapid recovery and superior cosmetic results compared to three-portal VATS. Additionally, uniportal VATS is superior to three-portal thoracoscopic surgery in terms of the immediate postoperative short-term QOL.


Assuntos
Adenocarcinoma de Pulmão/cirurgia , Carcinoma de Células Escamosas/cirurgia , Neoplasias Pulmonares/cirurgia , Excisão de Linfonodo/métodos , Pneumonectomia/métodos , Qualidade de Vida , Cirurgia Torácica Vídeoassistida/métodos , Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Escamosas/patologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
19.
Plant Dis ; 104(3): 875-881, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935342

RESUMO

Stripe rust is an important disease in wheat, and development of genetic resistance in cultivars is an effective approach to control the disease. Wild species of wheat, such as Thinopyrum intermedium, are an excellent gene source for wheat improvement. In this study, two stripe rust-resistant wheat-Th. intermedium chromosome translocation lines, CH4131 and CH4132, were characterized by cytogenetic and pathological methods. The introgressed chromosome fragment was tagged using amplified fragment-length polymorphism-derived sequence-characterized amplified region (SCAR) markers and intron targeting markers, indicating that CH4131 and CH4132 both possess a homologous group 3 chromatin of Th. intermedium. Genomic in situ hybridization results suggested that a very small Th. intermedium chromosome segment was translocated to the terminal region of wheat 1BS for both lines, forming a configuration of T3Ai-1BS.1BL. The two translocation lines were resistant to stripe rust, and the resistance gene, temporarily designated YrCH-1BS, was likely derived from Th. intermedium. The translocated chromosome fragments have no genetic linkage drag to agronomic performance. The grain quality indexes of these two translocations were higher than local wheat varieties. Therefore, CH4131 and CH4132 could be used as potential gene sources in wheat improvement programs. The SCAR markers are useful to select stripe rust resistance from Th. intermedium.


Assuntos
Basidiomycota , Triticum , Cromossomos de Plantas , Humanos , Poaceae , Translocação Genética
20.
Thorac Cancer ; 11(1): 156-165, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31777195

RESUMO

BACKGROUND: To investigate the regulatory mechanism behind miR-34a-altered Axl levels in non-small-cell lung cancer (NSCLC) with gefitinib-acquired resistance. METHODS: The expression of miR-34a, Axl, Gas6 and related downstream signaling proteins in the EGFR mutant NSCLC cell lines were determined by qRT-PCR and Western blot; PC9-Gef-miR-34a and HCC827-Gef-miR-34a cells were established by transfecting the parent cells with a miR-34a overexpressing virus, then the expression of Axl, Gas6 and the downstream channel-related proteins were also compared in PC9-Gef-miR-34a and HCC827-Gef-miR-34a and drug-resistant strains. The survival rate of the cells were measured by CCK8 assay. A luciferase reporter detected whether Axl was the target of miR-34a. Finally, a tumor-bearing nude mouse model was established to verify the relationship between the expression of miR-34a, Axl and Gas6 mRNA in vivo. RESULTS: The expression levels of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream proteins in PC9-Gef and HCC827-Gef cell lines were higher than those in PC9 and HCC827 parental cell lines, while the expression of miR-34a was lower than it was in the parental cell lines (P < 0.05). The expression of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream signaling proteins in PC9-Gef and HCC827-Gef cell lines was higher than the expression in PC9-Gef-miR-34a and HCC827-Gef-miR-34a cells, which overexpressed miR-34a (P < 0.05). CONCLUSION: The miR-34a regulation of Axl plays an important role in NSCLC-acquired gefitinib resistance, and their expression is inversely correlated, which suggests that they can be used as prognostic markers or potential therapeutic targets for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...