Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 25(9): 4363-4372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33811439

RESUMO

The forkhead box O3a protein (FoxO3a) has been reported to regulate tumour invasion and migration, but little is known about the molecular mechanism or its role in trophoblast invasion and migration into the uterus. In this study, we aim to explore its role in trophoblast development and placenta-related pregnancy complications and the potential mechanism. Levels of FoxO3a and its phosphorylated form (p-FoxO3a) in placental tissue from healthy pregnant women and pre-eclampsia patients were first compared. Then, HTR-8/SVneo cells were transfected with lentiviral vectors to deplete and overexpress FoxO3a. Western blot, immunohistochemistry, Cell Counting Kit-8, wound-healing assay, Matrigel invasion assay, cell apoptosis, cell cycle assay, RNA sequencing, qRT-PCR and ChIP-qPCR were performed on the cells to study the potential role of FoxO3a and the underlying mechanism. We found the expression of FoxO3a was decreased, whereas p-FoxO3a was increased in pre-eclampsia placentae. FoxO3a depletion significantly reduced transcription of the promoter region of intercellular cell adhesion molecule-1 (ICAM1) gene in ChIP assays and led to reduced invasion and migration of trophoblast cells, arrested cell cycle in G1 phase and increased apoptosis under oxidative stress. Our results suggested that FoxO3a may play a role in the regulation of trophoblast invasion and migration during placental development, which may be because of its affinity to the ICAM1 promotor.

2.
Prenat Diagn ; 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720417

RESUMO

OBJECTIVE: Twin-twin transfusion syndrome (TTTS) causes perinatal mortality and morbidity in monochorionic twins. The early recognition of and interventional therapy for TTTS is associated with a more favorable overall prognosis. However, the prediction by the use of ultrasound in the first trimester has relatively poor sensitivity and specificity. This study aimed to identify metabolic biomarkers to aid in ultrasound screening of TTTS. METHODS: Maternal plasma was prospectively collected between 11 and 15 weeks of gestation in apparently uncomplicated monochorionic-diamniotic twin pregnancies. This cohort was divided into: (i) patients who were subsequently diagnosed with TTTS by using ultrasound; (ii) uncomplicated matched controls. Metabolome was profiled by using gas chromatography-mass spectrometry. RESULTS: The levels of fatty acids, organic acids, oxaloacetic acid, and beta-alanine were significantly lower in the TTTS maternal plasma at 11-15 weeks of gestation, and methionine and glycine were also higher (p < 0.05, FDR<0.12). Generally, in TTTS pregnancies, the metabolisms of amino acid, carbohydrate, cofactors, vitamins, and purine were "down-regulated"; whereas bile secretion and pyrimidine metabolism were "upregulated." CONCLUSIONS: The metabolomics scanning of early gestation maternal plasma may identify those pregnancies that subsequently develop TTTS; in particular, downregulated fatty acid levels may be biologically plausible to be implicated in the pathogenesis of TTTS.

3.
Sci Rep ; 11(1): 3793, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589705

RESUMO

The prevalence of overweight and obesity amongst reproductive women has been increasing worldwide. Our aim was to compare pregnancy outcomes and infant neurocognitive development by different BMI classifications and investigate whether early pregnancy BMI was associated with risks of adverse outcomes in a Southwest Chinese population. We analysed data from 1273 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) randomized controlled trial in Chongqing, China. Maternal BMI was classified as underweight, normal weight and overweight/obese according to the Chinese, WHO Asian, and WHO European standards. For the adverse pregnancy outcomes, after adjustment for potential confounders, an underweight BMI was associated with increased risk of small for gestational age (SGA) babies, and an overweight/obese BMI was associated with increased risk of maternal gestational diabetes mellitus (GDM), caesarean section (C-section), macrosomia and large for gestational age (LGA) babies. For infant neurocognitive development, 1017 mothers and their children participated; no significant differences were seen in the Mental Development Index (MDI) or the Psychomotor Development Index (PDI) between the three BMI groups. Our findings demonstrate that abnormal early pregnancy BMI were associated with increased risks of adverse pregnancy outcomes in Chinese women, while early pregnancy BMI had no significant influence on the infant neurocognitive development at 12 months of age.

4.
PLoS One ; 16(2): e0244916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626041

RESUMO

BACKGROUND: Gangliosides are a class of sphingolipids that are present in the cell membranes of vertebrates. Gangliosides influence a broad range of cellular processes through effects on signal transduction, being found abundantly in the brain, and having a role in neurodevelopment. OBJECTIVE: We aimed to assess the effects of maternal daily consumption of ganglioside-enriched milk vs non-enriched milk and a non-supplemented group of pregnant women on maternal ganglioside levels and pregnancy outcomes. DESIGN: Double-blind parallel randomized controlled trial. METHODS: 1,500 women aged 20-40 years were recruited in Chongqing (China) between 11 and 14 weeks of a singleton pregnancy, and randomized into three groups: Control-received standard powdered milk formulation (≥4 mg gangliosides/day); Complex milk lipid-enhanced (CML-E) group-same formulation enriched with complex milk lipids (≥8 mg gangliosides/day) from milk fat globule membrane; Reference-received no milk. Serum ganglioside levels were measured in a randomly selected subsample of 250 women per group. RESULTS: CML-E milk was associated with marginally greater total gangliosides levels in maternal serum compared to Control (13.02 vs 12.69 µg/ml; p = 0.034) but not to Reference group. CML-E milk did not affect cord blood ganglioside levels. Among the 1500 women, CML-E milk consumption was associated with a lower rate of gestational diabetes mellitus than control milk [relative risk 0.80 (95% CI 0.64, 0.99)], but which was not different to the Reference group. CML-E milk supplementation had no other effects on maternal or newborn health. CONCLUSIONS: Maternal supplementation with milk fat globule membrane, as a source of gangliosides, was not associated with any adverse health outcomes, and did not increase serum gangliosides compared with the non-supplemented reference group. TRIAL REGISTRATION: Chinese Clinical Trial Register (ChiCTR-IOR-16007700). CLINICAL TRIAL REGISTRATION: ChiCTR-IOR-16007700; www.chictr.org.cn/showprojen.aspx?proj=12972.

5.
Clin Nutr ; 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610418

RESUMO

BACKGROUND & AIMS: To investigate the relationship between maternal serum fatty acid levels and gestational diabetes mellitus (GDM) subtypes across pregnancy. METHODS: A total of 680 singleton mothers enrolled in the Complex Lipids in Mothers and Babies (CLIMB) study in Chongqing, China were included. Clinical information and serum samples were collected at gestational weeks (GWs) 11-14, 22-28, and 32-34. 75 g Oral Glucose Tolerance Test (OGTT) was conducted at GW 24-28 and GDM subtypes divided into three groups using International Association of Diabetes and Pregnancy Study Group (IADPSG) guidelines criteria: elevated fasting plasma glucose (FPG group; n = 59); 1-h and/or 2-h post-load glucose (1h/2h-PG group; n = 94); combined group (FPG&1h/2h-PG group; n = 42). Non-GDM pregnancies were included (n = 485) as controls. Twenty fatty acids were quantified in serum using gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Overall, most serum fatty acid concentrations increased rapidly from the first to second trimester, followed by a plateauing or reduction in the third trimester (p < 0.001). In cross sectional analysis, fatty acid concentrations were significantly higher in the FPG group at GW 11-14 and decreased in the 1h/2h-PG group at GW 32-34, relative to controls. Moreover, higher α-linolenic acid (ALA; the second tertile: adjusted odds ratio [aOR] = 2.53, 95% CI: 1.17 to 5.47; the third tertile: aOR = 2.60, 95% CI: 1.20 to 5.65) and docosahexaenoic acid (DHA; the second tertile: aOR = 2.34, 95% CI: 1.10 to 4.97; the third tertile: aOR = 2.16, 95% CI: 1.00 to 4.63) were significantly associated with a higher risk of GDM in women with elevated fasting plasma glucose at GW 11-14 (first tertile as reference). CONCLUSIONS: Our findings highlight the importance of considering GDM subtypes for the individualised management of GDM in pregnancy. ALA and DHA in early pregnancy are associated with a higher risk of FPG-GDM subtype. This has widespread implications when recommending n-3 PUFAs supplementation for women with GDM.

6.
Exp Cell Res ; 396(1): 112266, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905804

RESUMO

The aggregation of ß-amyloid (Aß) peptide in Alzheimer's disease (AD) is characterized by mitochondrial dysfunction and mitophagy impairment. Mitophagy is a homeostatic mechanism by which autophagy selectively eliminates damaged mitochondria. Valinomycin is a respiratory chain inhibitor that activates mitophagy via the PINK1/Parkin signaling pathway. However, the mechanism underlying the association between mitophagy and valinomycin in Aß formation has not been explored. Here, we demonstrate that genetically modified (N2a/APP695swe) cells overexpressing a mutant amyloid precursor protein (APP) serve as an in vitro model of AD for studying mitophagy and ATP-related metabolomics. Our results prove that valinomycin induced a time-dependent increase in the mitophagy activation of N2a/APP695swe cells as indicated by increased levels of PINK1, Parkin, and LC3II as well as increased the colocalization of Parkin-Tom20 and fewer mitochondria (indicated by decreased Tom20 levels). Valinomycin significantly decreased Aß1-42 and Aß1-40 levels after 3 h of treatment. ATP levels and ATP-related metabolites were significantly increased at this time. Our findings suggest that the elimination of impaired mitochondria via valinomycin-induced mitophagy ameliorates AD by decreasing Aß and improving ATP levels.

7.
Neurotox Res ; 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955723

RESUMO

The activation of microglia is a hallmark of neuroinflammation and contributes to various neurodegenerative diseases. Chronic inorganic arsenic exposure is associated with impaired cognitive ability and increased risk of neurodegeneration. The present study aimed to investigate whether chronic inorganic arsenic-induced learning and memory impairment was associated with microglial activation, and how organic (DMAV 600 µM, MMAV 0.1 µM) and inorganic arsenic (NaAsO2 0.6 µM) affect the microglia. Male C57BL/6J mice were divided into two groups: a control group and a group exposed to arsenic in their drinking water (50 mg/L NaAsO2 for 24 weeks). The Morris water maze was performed to analyze neuro-behavior and transmission electron microscopy was used to assess alterations in cellular ultra-structures. Hematoxylin-eosin and Nissl staining were used to observe pathological changes in the cerebral cortex and hippocampus. Flow cytometry was used to reveal the polarization of the arsenic-treated microglia phenotype and GC-MS was used to assess metabolomic differences in the in vitro microglia BV-2 cell line model derived from mice. The results showed learning and memory impairments and activation of microglia in the cerebral cortex and dentate gyrus (DG) zone of the hippocampus, in mice chronically exposed to arsenic. Flow cytometry demonstrated that BV-2 cells were activated with the treatment of different arsenic species. The GC-MS data showed three important metabolites to be at different levels according to the different arsenic species used to treat the microglia. These included tyrosine, arachidonic acid, and citric acid. Metabolite pathway analysis showed that a metabolic pathways associated with tyrosine metabolism, the dopaminergic synapse, Parkinson's disease, and the citrate cycle were differentially affected when comparing exposure to organic arsenic and inorganic arsenic. Organic arsenic MMAV was predominantly pro-inflammatory, and inorganic arsenic exposure contributed to energy metabolism disruptions in BV-2 microglia. Our findings provide novel insight into understanding the neurotoxicity mechanisms of chronic arsenic exposure and reveal the changes of the metabolome in response to exposure to different arsenic species in the microglia.

8.
J Matern Fetal Neonatal Med ; : 1-8, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32722949

RESUMO

OBJECTIVES: This study aimed to identify which element of body composition measurements taken before 17th week gestation was the strongest risk factor for gestational diabetes mellitus (GDM) in Chinese pregnant women. DESIGN AND SETTING: A retrospective study was performed using data retrieved from the Electronic Medical Record database of Chongqing Health Center for Women and Children (China) from January 2014 to December 2015. PARTICIPANTS: A total of 22,223 women were included with singleton pregnancies and no preexisting diabetes who underwent bioelectrical impedance analysis (BIA) before 17 gestational weeks and 75-g OGTT at 24-28 gestational weeks. RESULTS: The prevalence of GDM from 2014 to 2015 was 27.13% (IADPSG). All indicators of BIA (total body water, fat mass, fat-free mass, percent body fat, muscle mass, visceral fat levels, proteins, bone minerals, basal metabolic rate, lean trunk mass), age, weight and body mass index (BMI) were risk factors that significantly increased the occurrence of GDM (p < .001 for all). Women older than 30 years or with a BMI more than 23, had a significantly higher GDM prevalence (34.89% and 34.77%). After adjusted covariates, visceral fat levels at the third quartile, the ORs of GDM were 1.142 (95% CI 1.032-1.263) in model I and 1.419 (95% CI 1.274-1.581) in model II used the first quartile as reference (p < .05 for both); bone minerals at the third quartile, the ORs of GDM were 1.124 (95% CI 1.020-1.238) in model I and 1.311 (95% CI 1.192-1.442) in model II (p < .05 for both). After adjusted for age, visceral fat levels and bone minerals, OR of GDM for percent body fat more than 28.77% at the third quartile was 1.334 (95% CI 1.201-1.482) in model II (p < .05 for both). CONCLUSIONS: Visceral fat levels, bone minerals and percent body fat were significantly associated with an increased risk of GDM, providing the reference ranges of visceral fat levels, bone minerals and percent body fat as predictive factors for Chinese women to estimate the risk of GDM by BIA during pregnancy.

9.
Aging (Albany NY) ; 12(14): 14019-14036, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697764

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a metabolic disease that can have long-term adverse effects on the cognitive function of mothers. In our study, we explored the changes in metabolic health and cognitive function in mice of middle- and old- age after exposure to GDM, and whether metformin therapy during pregnancy provided long-term benefits. RESULTS: Mice with GDM demonstrated significant cognitive impairment in old age, which was associated with insulin resistance. Gestational metformin therapy was shown to increase insulin sensitivity and improve cognition. The ovarian aging rate was also accelerated in mice exposed to GDM during pregnancy, which may be related to fatty acid metabolism in the ovaries. CONCLUSION: Treatment with metformin during pregnancy was shown to improve fatty acid metabolism in ovarian tissues. METHOD: During pregnancy, mice were fed with a high-fat diet (GDM group) or a low-fat diet (Control group), and a third group received metformin while receiving a high-fat diet (Treatment group). At 12 months old, the mice completed an oral glucose tolerance test, insulin tolerance test, Morris water maze test, female sex hormones were measured, and metabolite profiles of tissue from the ovaries, hypothalamus, and pituitary glands were analysed using gas chromatography-mass spectrometry.

10.
Sci Rep ; 10(1): 9422, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523012

RESUMO

Infant adiposity may be related to later metabolic health. Maternal metabolite profiling reflects both genetic and environmental influences and allows elucidation of metabolic pathways associated with infant adiposity. In this multi-ethnic Asian cohort, we aimed to (i) identify maternal plasma metabolites associated with infant adiposity and other birth outcomes and (ii) investigate the maternal characteristics associated with those metabolites. In 940 mother-offspring pairs, we performed gas chromatography-mass spectrometry and identified 134 metabolites in maternal fasting plasma at 26-28 weeks of gestation. At birth, neonatal triceps and subscapular skinfold thicknesses were measured by trained research personnel, while weight and length measures were abstracted from delivery records. Gestational age was estimated from first-trimester dating ultrasound. Associations were assessed by multivariable linear regression, with p-values corrected using the Benjamini-Hochberg approach. At a false discovery rate of 5%, we observed associations between 28 metabolites and neonatal sum of skinfold thicknesses (13 amino acid-related, 4 non-esterified fatty acids, 6 xenobiotics, and 5 unknown compounds). Few associations were observed with gestational duration, birth weight, or birth length. Maternal ethnicity, pre-pregnancy BMI, and diet quality during pregnancy had the strongest associations with the specific metabolome related to infant adiposity. Further studies are warranted to replicate our findings and to understand the underlying mechanisms.


Assuntos
Adiposidade/fisiologia , Biomarcadores/sangue , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Adulto , Peso ao Nascer/fisiologia , Índice de Massa Corporal , Dieta/métodos , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Obesidade/sangue , Obesidade/fisiopatologia , Gravidez , Estudos Prospectivos , Pregas Cutâneas
11.
Mol Med ; 26(1): 37, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357834

RESUMO

BACKGROUND: Selective intrauterine fetal growth restriction (sIUGR) in monochorionic diamniotic twins, especially types 2&3 with abnormal umbilical artery Doppler, results in increased risk of fetal/perinatal mortality and postnatal disability. We investigate whether the hair metabolome profiles of neonates were associated with the pathophysiological differences across the different clinical forms of sIUGR in twins. METHODS: Hair samples were collected at delivery from 10 pairs of type 1 sIUGR twins, 8 pairs of types 2&3 sIUGR twins, and 11 pairs of twins without sIUGR. The hair metabolome was characterized using gas chromatography-mass spectrometry. RESULTS: Our results demonstrated that the hair metabolite profiles of the different sIUGR subclinical forms were associated with the averaged fetal growth rate after 28 weeks of gestation but not with birthweight. The hair profiles were capable of discriminating type2&3 sIUGR twins from twins without sIUGR. In particular, the metabolites 2-aminobutyric acid, cysteine, alanine, and tyrosine all displayed areas under the receiver operating characteristic curve were above 0.9. The metabolic pathway analysis highlighted the associations of sIUGR twins with abnormal umbilical artery flow with increased metabolites from a nutrient depletion pathway, glutathione metabolism, and nerve development. CONCLUSION: This study offers novel insight into the severity of intrauterine ischemia and hypoxia for T2&3 sIUGR twins, through evaluation of the neonatal hair metabolome.

12.
Sci Rep ; 10(1): 6743, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317737

RESUMO

Subclinical hypothyroidism (SCH) is a common endocrine disorder affecting women of reproductive age. Although SCH and abnormal fatty acid composition are often associated with adverse pregnancy outcomes and metabolic syndrome later in maternal and fetal life, the longitudinal relationship between SCH and serum fatty acids during pregnancy has rarely been studied. Therefore, the aim of this study was to investigate the association between SCH and maternal serum fatty acids throughout gestation. A total of 240 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) study in Chongqing, China were included in our study. Clinical information and maternal serum samples were collected at three time points during pregnancy: 11-14th, 22-28th, and 32-34th weeks of gestation. Twenty serum fatty acids were quantified using gas chromatography-mass spectrometry (GC-MS) analysis. A majority of the 20 serum fatty acids increased as gestation progressed in women with a normal pregnancy and women experiencing SCH. Levels of arachidic acid, docosahexaenoic acid, and eicosenoic acid were significantly higher in the serum of women with SCH when compared to women with a normal pregnancy, in the second trimester. On the other hand, the levels of eicosadienoic acid and octadecanoic acid were significantly higher in SCH in the third trimester. Our findings demonstrate that serum fatty acid composition during the second and third trimesters was significantly associated with SCH in pregnant Chinese women.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácidos Eicosanoicos/sangue , Ácidos Graxos Monoinsaturados/sangue , Hipotireoidismo/sangue , Ácidos Esteáricos/sangue , Adulto , Área Sob a Curva , Grupo com Ancestrais do Continente Asiático , Doenças Assintomáticas , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Feto , Cromatografia Gasosa-Espectrometria de Massas , Idade Gestacional , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/etnologia , Hipotireoidismo/fisiopatologia , Gravidez , Trimestres da Gravidez/sangue
13.
Reprod Sci ; 27(2): 488-502, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32046443

RESUMO

Embryo implantation is a complex process which involves biochemical and physiological interactions between an implantation-competent blastocyst and a receptive uterus. However, the exact biochemical changes of uterine fluid, uterus, and plasma during peri-implantation remain unclear. This study aims to characterize the biochemical and metabolic changes that occur during the peri-implantation period of early pregnancy, using mice as an animal model. Gas chromatography-mass spectrometry was used to analyze the metabolite profiles of the uterus, uterine fluid, and maternal plasma at pre-implantation and implantation. The multivariate analyses, ANOVA and Tukey's HSD test, were applied to detect significant changes in metabolites and metabolic pathways. The metabolic networks were reconstructed in silico based on the identified metabolites and KEGG metabolic framework. Between pre-implantation day 1 and day 4, dramatic metabolic changes were observed in the uterine fluid that could be important for blastocyst development and protection against the harsh uterine environment. Palmitoleic acid, fumaric acid, and glutaric acid changed levels at day 4 in the uterus, suggesting that they may be associated with endometrial receptivity. Both the uterus and maternal plasma showed profound changes in cellular metabolism at the early implantation period, including upregulation of branched-chain amino acids and intermediates of one-carbon metabolism, an upregulation of glyoxylate and dicarboxylate metabolism, and downregulation of aerobic respiration; all of which could be involved in the regulation of the maternal-fetal interface, alternative nutrient utilization, and energy preservation for implantation as well as later placentation and fetal development to ensure successful embryo implantation.

14.
Sci Rep ; 10(1): 3547, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32080320

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Mol Med Rep ; 21(2): 540-548, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31974599

RESUMO

Placental oxidative stress is present throughout the duration of pregnancy, but it is when oxidative stress exceeds the normal physiological level that complications can occur. Trophoblast cell lines are commonly utilized for oxidative stress research due to their distinct uniform cell population and easy­to­apply interventions. However, conflicting results are often reported when different oxidative stress cell models are used. In this study, the aim was to characterize the intracellular and extracellular metabolite profiles of different oxidative stress cell models commonly used in the research of pregnancy complications. HTR8/SVneo human trophoblast cell lines were treated with five different oxidative stress­inducing conditions: Hypoxia (1% oxygen); hypoxia and reoxygenation; cobalt chloride (CoCl2; 300 µmol/l); sodium nitroprusside (SNP; 2.5 mmol/l); and the serum of women with preeclampsia (10% v/v). Intracellular metabolites were extracted from cells and extracellular metabolites were collected from spent media for metabolomic analysis via gas chromatography­mass spectrometry. The results demonstrated that there were distinct differences in the intracellular and extracellular metabolome between the different cell models. Meanwhile, treatments with exogenous drugs, such as CoCl2 and SNP, resulted in more similar metabolite profiles. These disparities between the different oxidative stress cell models will have implications for the applications of these results, and highlight the need for the standardization of oxidative stress cell models in obstetric research.


Assuntos
Metabolismo , Estresse Oxidativo , Adulto , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/farmacologia , Humanos , Metabolismo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Modelos Biológicos , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal
16.
Cell Tissue Res ; 379(3): 589-599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31637543

RESUMO

Preeclampsia (PE) development is often associated with placental immune and inflammatory dysregulation, as well as endoplasmic reticulum (ER) stress. However, the mechanisms linking ER stress and inflammatory dysregulation to PE have not been elucidated. It has been reported that thioredoxin-interacting protein (TXNIP), which can bind with and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome, is a key point in immune regulation. Recent experimental evidence suggests that activated NLRP3 inflammasomes can activate interleukin-1ß (IL-1ß) production in the placenta of patients with PE. The objective of the current study was to explore if TXNIP plays a critical signaling role linking ER stress with NLRP3 inflammasome activation in PE. We hypothesized that ER stress would induce TXNIP production, which would bind with NLRP3 inflammasomes to activate IL-1ß production. These cells showed a higher protein level of NLRP3 and IL-1ß, as well as a higher enzymatic activity of caspase-1, indicating enhanced inflammatory dysregulation and ER stress. Cells transfected with TXNIP siRNA showed reduced NLRP3 inflammasome activation. Cells treated with 4-phenylbutyric acid, an inhibitor of ER stress, showed a similar result. Outgrowth of the explant with TXNIP lentivirus in H/R or tunicamycin (inducers of ER stress) was also measured to verify our hypothesis. These findings demonstrated that TXNIP could influence inflammatory dysregulation by mediating ER stress and NLRP3 inflammasome activation in PE. This novel mechanism may further explain the inflammation observed at the maternal-fetal interface, which leads to placental dysfunction in a patient with PE.

17.
Cell Tissue Res ; 380(1): 203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31811406

RESUMO

The authors apologize that in our published paper entitled "Endoplasmic reticulum stress may activate NLRP3 inflammasomes via TXNIP in preeclampsia" Cell and Tissue Research (Published online: 22 October 2019).

18.
Sci Rep ; 9(1): 13701, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548567

RESUMO

Prediction of spontaneous preterm birth (sPTB) in asymptomatic women remains a great challenge; accurate and reproducible screening tools are still not available in clinical practice. We aimed to investigate whether the maternal serum metabolome together with clinical factors could be used to identify asymptomatic women at risk of sPTB. We conducted two case-control studies using gas chromatography-mass spectrometry to analyse maternal serum samples collected at 15- and 20-weeks' gestation from 164 nulliparous women from Cork, and 157 from Auckland. Smoking and vaginal bleeding before 15 weeks were the only significant clinical predictors of sPTB for Auckland and Cork subsets, respectively. Decane, undecane, and dodecane were significantly associated with sPTB (FDR < 0.05) in the Cork subset. An odds ratio of 1.9 was associated with a one standard deviation increase in log (undecane) in a multiple logistic regression which also included vaginal bleeding as a predictor. In summary, elevated serum levels of the alkanes decane, undecane, and dodecane were associated with sPTB in asymptomatic nulliparous women from Cork, but not in the Auckland cohort. The association is not strong enough to be a useful clinical predictor, but suggests that further investigation of the association between oxidative stress processes and sPTB risk is warranted.


Assuntos
Metaboloma , Nascimento Prematuro/diagnóstico , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Espectrometria de Massas , Idade Materna , Gravidez , Nascimento Prematuro/sangue
19.
Med Sci Monit ; 25: 6128-6152, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418429

RESUMO

BACKGROUND Gestational diabetes mellitus (GDM) is a pregnancy complication that is diagnosed by the novel onset of abnormal glucose intolerance. Our study aimed to investigate the changes in human breast milk metabolome over the first month of lactation and how GDM affects milk metabolome. MATERIAL AND METHODS Colostrum, transition milk, and mature milk samples from women with normal uncomplicated pregnancies (n=94) and women with GDM-complicated pregnancies (n=90) were subjected to metabolomic profiling by the use of gas chromatography-mass spectrometry (GC-MS). RESULTS For the uncomplicated pregnancies, there were 59 metabolites that significantly differed among colostrum, transition milk, and mature milk samples, while 58 metabolites differed in colostrum, transition milk, and mature milk samples from the GDM pregnancies. There were 28 metabolites that were found to be significantly different between women with normal pregnancies and women with GDM pregnancies among colostrum, transition milk, and mature milk samples. CONCLUSIONS The metabolic profile of human milk is dynamic throughout the first months of lactation. High levels of amino acids in colostrum and high levels of saturated fatty acids and unsaturated fatty acids in mature milk, which may be critical for neonatal development in the first month of life, were features of both normal and GDM pregnancies.


Assuntos
Colostro/química , Diabetes Gestacional/metabolismo , Leite Humano/química , Adulto , Aminoácidos/metabolismo , Índice de Massa Corporal , Aleitamento Materno , China , Colostro/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Lactação/metabolismo , Lactação/fisiologia , Metaboloma/fisiologia , Metabolômica , Leite Humano/metabolismo , Período Pós-Parto/metabolismo , Gravidez
20.
Sci Rep ; 9(1): 12017, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427618

RESUMO

The gut microbiome plays a fundamental role in host health and the fecal metabolome can be analysed to assess microbial activity and can be used as an intermediate phenotype monitoring the host-microbiome relationship. However, there is no established extraction protocol to study the fecal metabolome of giant pandas. The aim of this research is to optimize extraction of the fecal metabolome from adult and baby pandas for high throughput metabolomics analysis using gas chromatography-mass spectrometry (GC-MS). Fecal samples were collected from eight adult pandas and a pair of twin baby pandas. Six different extraction solvents were investigated and evaluated for their reproducibility, metabolite coverage, and extraction efficiency, particularly in relation to the biochemical compound classes such as amino acids, tricarboxylic acid (TCA) cycle intermediates, fatty acids, secondary metabolites, and vitamin and cofactors. Our GC-MS results demonstrated that the extraction solvents with isopropanol: acetonitrile: water (3:2:2 ratio) and 80% methanol were the most appropriate for studying the fecal metabolome of adult and baby giant pandas respectively. These extraction solvents can be used in future study protocols for the analysis of the fecal metabolome in giant pandas.


Assuntos
Fezes/química , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Metabolômica , Solventes , Ursidae/metabolismo , Fatores Etários , Animais , Fracionamento Químico , Análise de Dados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...