RESUMO
This experiment was conducted to evaluate the effects of a methionine hydroxy analog (MHA) on in vitro gas production, rumen fermentation parameters, and rumen microbiota. Two different MHA, 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi) and the calcium salt of the hydroxy analog of methionine (MHA-Ca), were selected for in vitro experiments. The treatments were the Control group (0% of MHA), HMBi group (2%HMBi), and MHA-Ca group (2%MHA-Ca). Dry matter digestibility was measured after 12 h and 24 h of fermentation, and fermentation parameters and microbial composition were analyzed after 24 h. HMBi and MHA-Ca showed increased (p = 0.001) cumulative gas production in 3 h. The total volatile fatty acids, microbial protein (MCP) concentration, acetate, and acetate to propionate ratio in the HMBi and MHA-Ca groups were significantly higher than those in the Control group (p = 0.006, p = 0.002, p = 0.001, p = 0.004), and the NH3-N concentrations in the HMBi and MHA-Ca groups were significantly lower than those in the Control group (p = 0.004). The 16S rRNA sequencing revealed that the HMBi group had a higher (p = 0.039, p = 0.001, p = 0.027) relative abundance of Bacteroidetes, Firmicutes, and Synergistetes and a lower relative abundance of Proteobacteria (p = 0.001) than the Control group. At the genus level, Prevotella abundance was higher (p = 0.001), while Ruminobacter abundance was lower (p = 0.001), in the HMBi and MHA-Ca groups than in the Control group. Spearman's correlation analysis showed that the relative abundance of Prevotella_1, Streptococcus, and Desulfovibrio was positively correlated with dry matter digestibility, MCP, and fermentation parameters. MHA, thus, significantly increased gas production and altered the rumen fermentation parameters and microbiota composition of sheep.
RESUMO
Based on the pollutant concentration data of Taiyuan City from 2016 to 2020 and the surface meteorological data of the national benchmark meteorological observation station in the same period, the variation characteristics of PM2.5 concentration in Taiyuan City and the effects of meteorological conditions such as humidity, precipitation, wind, and mixing layer thickness on PM2.5 concentration were analyzed. At the same time, the causes of pollutant concentration changes were discussed, and the PM2.5 concentration prediction model based on the LSTM neural network was established. The results showed that the number of days of heavy pollution in Taiyuan City from 2016 to 2020 was the highest in winter, of which the maximum number of days in 2017 was 28 days. The PM2.5 concentration was generally high in autumn and winter and low in spring and summer. The PM2.5 concentration on weekends was higher than that on weekdays. The daily variation in PM2.5 concentration roughly presented a bimodal distribution, which appeared around 09:00 and 23:00 to 01:00 the following day. Except for relative humidity and winter temperature, other air pressure, wind speed, and PM concentration showed negative correlations in the four seasons. The pollution sources affecting the increase in PM2.5 concentration in Taiyuan City were mainly located in the NE-ENE-E direction, and the pollution in the northwest was not relatively apparent. In flood season, when the precipitation reached the level of moderate rain (rainfall ≥ 10 mm), it had an obvious effect on the reduction of PM2.5 concentration. The increase in atmospheric mixing layer height was very beneficial to the diffusion and dilution of PM2.5 in the vertical direction. The strong northwest air flow in winter, low relative humidity, high pressure control on the ground, and high height of the mixing layer belonged to the cluster most conducive to the reduction in PM2.5 concentration. Using the LSTM model for modeling, the R2 of PM2.5 concentration prediction was as high as 0.95, which was significantly better than that of the traditional tree model and linear regression model (R2<0.60). The residual of the prediction results was close to the normal distribution, of which the absolute error of 84.2% prediction results was less than 20 µg·m-3, and the MAE, MAPE, and RMSE of the model were 38.17, 17.19%, and 20.6, respectively.
RESUMO
Heat stress (HS) is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. The hypothalamic-pituitary-mammary gland axis (HPM axis) plays an important role in the regulation of stress response and lactation physiology in heat-stressed dairy cows. The aim of this study was to explore the lncRNA profile, and the competitive endogenous RNA (ceRNA) regulatory network in hypothalamus, pituitary, and mammary gland tissues of heat-stressed and normal dairy cows. We performed RNA sequencing (RNA-seq) to identify differentially expressed (DE) lncRNAs, and the ceRNA regulatory network was established in HPM-axis-related tissues. Our results showed that a total of 13, 702 and 202 DE lncRNAs were identified in hypothalamus, pituitary, and mammary glands, respectively. Of lncRNAs, 8, 209 and 45 were up-regulated, and 5, 493 and 157 lncRNAs were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DE lncRNAs target genes that might play a role in hormone synthesis, secretion and action, apoptosis, mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling pathway. Moreover, the ceRNA regulatory network associated with the MAPK signaling pathway in HPM-axis-related tissues contains 3286 lncRNA-mRNA pairs. Furthermore, the ceRNA regulatory network associated with apoptosis, prolactin, AMPK, and mTOR signaling pathway in the mammary gland contains 772 lncRNA-mRNA pairs. Thus, some lncRNAs may be involved in the regulation of stress response and the physiological process of lactation. The changes in lncRNA expression profiles and ceRNAs (lncRNA-miRNA-mRNA) in HPM-axis-related tissues are the key to affect the stress response and lactation physiology of dairy cows under HS, which provide a theoretical basis for the molecular mechanism in the stress response of HPM-axis-related tissues in dairy cows under HS.
Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Animais , Bovinos , RNA Longo não Codificante/genética , Proteínas Quinases Ativadas por AMP/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Resposta ao Choque Térmico , Serina-Treonina Quinases TOR/genética , Redes Reguladoras de GenesRESUMO
Heat stress (HS) is directly correlated with mammary gland dysfunction and the hypothalamic-pituitary-mammary gland (HPM) axis is involved in regulating stress responses and lactation in dairy cows. Circular RNAs (circRNAs) play major roles in regulating transcription and post-transcription but their expression in the HPM axis of dairy cows under HS is still unclear. In the present study, we performed RNA sequencing to identify diferentially expressed (DE) circRNAs, DE microRNAs(miRNAs) and DEmRNAs, and performed bioinformatics analysis on those in HPM axis-related tissues of heat-stressed and normal cows. A total of 1680, 1112 and 521 DEcircRNAs, 120, 493 and 108 DEmiRNAs, 274, 6475 and 3134 DEmRNAs were identified in the hypothalamic, pituitary, and mammary gland tissues, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses indicated that the MAPK signaling pathway is potentially a key pathway. Competitive endogenous RNA (ceRNA) networks related to HS response and lactation regulation were established in three tissues. In conclusion, our results indicate that HS induces differential circRNA expression profiles in HPM axis-related tissues, and the predicted ceRNA network provides a molecular basis for regulating the stress response and lactation regulation in heat-stressed dairy cows.
Assuntos
MicroRNAs , Feminino , Bovinos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipófise/metabolismo , Resposta ao Choque Térmico/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodosRESUMO
In recent years, laser-mediated photodynamic therapy and photothermal therapy have attracted widespread attention due to their minimally invasive, easy to operate characteristics and high specificity. However, the traditional photodynamic or photothermal therapy exist several shortcomings such as the hypoxic microenvironment, intracellular heat shock proteins or complex operation. In this study, covalent organic framework (COF) was used as the drug carrier to equip with the photosensitizer indocyanine green (ICG) and the hypoxia-activating prodrug AQ4N. The hyaluronic acid (HA) was modified on the surface of COF to obtain the HA-COF@ICG/AQ4N drug delivery system. HA-modified COF delivery systems can target tumor cells through recognize CD44 which is overexpressed in the surface of tumor cells membrane. Under the irradiation of single NIR laser, ICG that can excite the nanoplatform simultaneously produces a combined effect of photodynamic and photothermal. At the same time, photodynamic therapy through depleting intracellular oxygen exacerbates the hypoxic state of the tumor microenvironment, which in turn enhances AQ4N reduced to chemotherapeutic drug AQ4, producing a synergistic cascade antitumor effect. The results of our study by tumor cell and tumor spheroids indicated that the hypoxia-activated multi-functional nanoplatform could effectively inhibit the growth and metastasis of triple-negative breast cancer.
Assuntos
Estruturas Metalorgânicas , Nanopartículas , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Raios Infravermelhos , Hipóxia , Linhagem Celular Tumoral , Verde de Indocianina/farmacologia , Microambiente TumoralRESUMO
Methionine hydroxy analogs (MHA) are widely used as the main sources of methionine in ruminant feed production. The purpose of this study was to explore the effect of using MHA supplements such as MHA as a salt of calcium (MHA-Ca) and 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) as sources of methionine on the rumen microbiota and metabolome in Hu sheep. Seventy-two healthy Hu sheep were randomly assigned to three dietary treatment groups: control, MHA-Ca, and HMBi groups. The results showed that the concentrations of total volatile fatty acids, acetate, and propionate were higher in the HMBi group than in the control group. The HMBi and MHA-Ca groups had higher alpha diversity values than those in control group. We compared the rumen microbiota by using 16S rRNA gene sequencing. At the phylum level, the HMBi group had a higher relative abundance of Firmicutes and a lower relative abundance of Synergistetes than did the control group. At the genus level, the control group had a higher relative abundance of Treponema_2 than did the HBMi group and a higher relative abundance of Prevotellaceae_UCG_004 than did the MHA-Ca group. Metabolomic analyses revealed that fatty acids, amino acids, lipids, organic acids, sugars, amines, and nucleosides were significantly altered in both MHA-Ca and HMBi groups. Metabolites with significant differences were enriched in amino acid and carbohydrate metabolisms, such as phenylalanine metabolism, biosynthesis of amino acids, tryptophan metabolism, galactose metabolism, and tyrosine metabolism. Above all, the findings presented in this study indicate that MHA alter the rumen microbiota and metabolites and that different forms of MHA have different impacts. The results of our study contribute to a better understanding of the effects of MHA.
RESUMO
Valine, a kind of branched-chain amino acid, plays a regulatory role beyond that of a building block in milk protein synthesis. However, the underlying molecular mechanism through which valine stimulates ß-casein synthesis has not been clarified. Therefore, our study aimed to evaluate the effect of valine on ß-casein synthesis and shed light into the molecular mechanism using an in vitro model. Results showed that valine supplementation significantly increased ß-casein synthesis in bovine mammary epithelial cells (BMECs). Meanwhile, the supplementation of valine resulted in high levels of branched-chain aminotransferase transaminase 2 (BCAT2), TCA-cycle intermediate metabolites, and ATP, AMP-activated protein kinase (AMPK) inhibition, and mammalian target of rapamycin (mTOR) activation. Furthermore, the inhibition of BCAT2 decreased the ß-casein synthesis and downregulated the AMPK-mTOR pathway, with similar results observed for AMPK activation. Together, the present data indicate that valine promotes the synthesis of ß-casein by affecting the AMPK-mTOR signaling axis and that BCAT2-mediated valine catabolism is the key target.
Assuntos
Proteínas Quinases Ativadas por AMP , Caseínas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caseínas/metabolismo , Bovinos , Células Epiteliais/metabolismo , Mamíferos/metabolismo , Glândulas Mamárias Animais/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transaminases/metabolismo , Valina/metabolismo , Valina/farmacologiaRESUMO
Milk protein concentrations in dairy cows are considered to be related to some plasma biomolecules. However, the characteristics of plasma biomolecules in dairy cows with different long-term milk protein concentrations are not fully elucidated. This study was conducted to understand the mechanism of plasma proteins in milk protein synthesis by the comparative analysis of the plasma proteomics of cows with different milk protein concentrations. Three groups of Holstein cows (per group = 10) with low (LMP), medium (MMP), and high long-term milk protein concentrations (HMP) were selected for the experiment to determine plasma hormones, biochemical parameters, and proteome. We found that HMP cows had higher concentrations of plasma insulin-like growth factor 1 (IGF-1), glucose, prolactin, insulin, and growth hormone than LMP cows. Additionally, plasma proteomic identified 91 differential proteins, including IGF-1 between the LMP and HMP groups, and the mTOR pathway was enriched. In vitro, IGF-1 treatment increased ß-casein expression and simultaneously activated S6K1 and mTOR phosphorylation in bovine mammary epithelial cells. Taken together, these data demonstrate the differences in plasma hormones, biochemical parameters, and proteome of cows with different milk protein concentrations and indicate that IGF-1 enhanced milk protein synthesis, associated with activation of the mTOR signaling pathway.
RESUMO
The rumen is a vital organ containing vast amounts of microbes that play a key role in the digestion of nutrients and affect the production performance of ruminants. However, few studies have focused on the characterization of the ruminal microbiota composition and function in cows with long-term difference milk protein concentrations, and the relationship between milk protein concentration and ruminal microbiota remains elusive. In this study, we collected the data of milk protein concentrations of 1,025 Holstein cows for 10 mo on a commercial farm. Based on the milk protein concentrations, 30 cows were selected and divided into three groups (nâ =â 10 per group): low milk protein group (LMP, milk protein concentrationâ <â 3.1%), medium milk protein group (MMP, 3.1%â ≤â milk protein concentrationâ <â 3.4%), and high milk protein group (HMP, milk protein concentrationâ ≥â 3.4%). The ruminal microbiome, metabolome, VFA concentrations and proportions, and amino acid profiles of the three groups were analyzed. The data showed that free amino acid (FAA) levels were lower in the rumen and higher in the plasma of HMP cows (Pâ <â 0.05). In addition, lower NH3 concentrations were observed in the rumen, plasma, and milk of the HMP cows (Pâ <â 0.05). Protease activity and isobutyric acid molar proportion in the rumen were lower in the HMP group (Pâ <â 0.05). Microbiome analysis showed that HMP cows had lower microbial diversity (represented as Shannon and Simpson indices) than LMP cows. At the genus level, lower relative abundances of Prevotella_1 and Ruminococcaceae_UCG_005 were observed in the HMP group (Pâ <â 0.05). At the operational taxonomic unit (OTU) level, a lower relative abundance of OTU3 (Prevotella ruminicola) was observed in the HMP group (Pâ <â 0.05). We found that the relative abundances of ruminal Prevotella_1 and OTU3 (Prevotella ruminicola) were negatively correlated with milk protein concentration (Pâ <â 0.05). These findings suggested that the cows with long-term high milk protein concentrations had lower microbial diversity and weaker protein degradation ability in the rumen. Furthermore, our observations identified a correlation between the milk protein concentration and ruminal microbiota.
This study aimed to assess the ruminal microbiome, metabolome, volatile fatty acid concentrations, and amino acid profiles of Holstein cows with different milk protein concentrations. Previous studies have reported that ruminal microbiota can affect the lactation performance of dairy cows. However, little is known about the composition and function of ruminal microbiota in dairy cows differing in milk protein concentrations. In this study, we collected the milk protein concentrations data of 1,025 Holstein cows for 10 mo on a commercial farm. Three groups of cows (nâ =â 10 per group) with low, medium, and high milk protein concentrations were selected. We found that cows with long-term high milk protein concentrations had lower microbial diversity, relative abundances of specific ruminal microbiota, protease activity, and amino acid concentration in the rumen compared to the cows with long-term low milk protein concentration. Meanwhile, cows with long-term high milk protein concentration showed higher amino acid concentrations in the plasma and lower ammonia levels in rumen, plasma and milk than cows with low milk protein concentration. Our findings revealed the correlation between milk protein concentration and specific ruminal microbiota, and proposed a possibility that ruminal microbiota affected milk protein concentration by altering host amino acid profile.
Assuntos
Microbiota , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Rúmen/metabolismo , Lactação , Ácidos Graxos Voláteis/metabolismo , Fermentação , Dieta/veterinária , Prevotella/metabolismo , Metaboloma , Aminoácidos/metabolismo , Ração Animal/análiseRESUMO
Heat stress is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. Abnormally high environmental temperature induces oxidative stress and apoptosis in bovine mammary epithelial cells (BMECs). Nicotinamide mononucleotide (NMN) has beneficial effects in maintaining the cellular physiological functions. In this study, we evaluate the protective effect of NMN on heat stress-induced apoptosis of BMECs and explore the potential underlying mechanisms. Our results showed that heat stress considerably decreased cell viability in BMECs, whereas pretreatment of BMECs with NMN (150 µM) for 24 h significantly alleviated the negative effects of heat stress on cells. NMN protected BMECs from heat stress-induced oxidative stress by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited apoptosis by reducing the ratio of Bax/Bcl2 and blocking proteolytic the cleavage of Caspase-3 in heat stressed-BMECs. Importantly, NMN treatment could reduce mitochondrial damage through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (MFN1, 2); and suppress endoplasmic reticulum stress through unfolded protein response regulator Glucose regulated protein 78 (GRP78), and downstream elements Recombinant activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Above all, our results demonstrate that NMN supplemention attenuates heat stress-induced oxidative stress and apoptosis in BMECs by maintaining mitochondrial fission and fusion, and regulating endoplasmic reticulum stress, which provides the convincing evidence that NMN has valuable potential in alleviating mammary gland injury of dairy cows caused by environmental heat stress.
Assuntos
Estresse do Retículo Endoplasmático , Mononucleotídeo de Nicotinamida , Animais , Apoptose , Bovinos , Células Epiteliais/metabolismo , Feminino , Resposta ao Choque Térmico , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Estresse OxidativoRESUMO
With global warming, heat stress has become an important challenge for the global dairy industry. Sirtuin 3 (SIRT3), an important mitochondrial NAD+dependent decarboxylase and a major regulator of cellular energy metabolism and antioxidant defense, is integral to maintaining normal mitochondrial function. The aim of this study was to assess the protective effect of SIRT3 on damage to bovine mammary epithelial cells (BMECs) induced by heat stress and to explore its potential mechanism. Our results indicate that SIRT3 is significantly downregulated in heat-stressed mammary tissue and high-temperature-treated BMECs. SIRT3 knockdown significantly increased the expression of HSP70, Bax, and cleaved-caspase 3 and inhibited the production of antioxidases, thus promoting ROS production and cell apoptosis in BMECs. In addition, SIRT3 knockdown can aggravate mitochondrial damage by mediating the expression of genes related to mitochondrial fission and fusion, including dynamin-related protein 1, mitochondrial fission 1 protein, and mitochondrial fusion proteins 1and 2. In addition, SIRT3 knockdown substantially decreased AMPK phosphorylation in BMECs. In contrast, SIRT3 overexpression in high-temperature treatment had the opposite effect to SIRT3 knockdown in BMECs. SIRT3 overexpression reduced mitochondrial damage and weakened the oxidative stress response of BMECs induced by heat stress and promoted the phosphorylation of AMPK. Taken together, our results indicate that SIRT3 can protect BMECs from heat stress damage through the AMPK signaling pathway. Therefore, the reduction of oxidative stress by SIRT3 may be the primary molecular mechanism underlying resistance to heat stress in summer cows.
RESUMO
Sestrin2 (SESN2) is a highly conservative oxidative stress protein that can regulate energy metabolism, cell proliferation, apoptosis, and mitochondria autophagy processes. It plays a role as an antioxidant in various diseases. The aims of the present study were to explore the underlying role of SESN2 after hydrogen peroxide (H2 O2 ) treatment in bovine mammary epithelial cells (MAC-T cells) by the methods of knockout or overexpression of SESN2. The results show that knockout of Sestrin2 exacerbate apoptosis, upregulate the expressions of Bax/Bcl2 in H2 O2 -treated MAC-T cells. Moreover, knockout of SESN2 also promoted reactive oxygen species (ROS) generation and exacerbated oxidative damage in H2 O2 -treated MAC-T cells. On the contrary, overexpression of SESN2 decreased apoptosis by downregulation of Bax/Bcl2 level decreased ROS generation and blocked oxidative damage in H2 O2 -treated MAC-T cells. In addition, results indicate that the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor (erythroid-derived 2) like2 (Nrf2)/antioxidant response element (ARE) signaling pathway was activated by H2 O2 ; upregulation of SESN2 could relieve oxidative stress by inducing the expression of Keap1, Nrf2, HO-1, and NDPH: quinone oxidoreductase-1 protein. In conclusion, this study demonstrates that expression of SESN2 was significantly increased after H2 O2 treatment and that SESN2 can alleviate oxidative stress and cell apoptosis in H2 O2 -treated MAC-T cells through activation of the Keap1-Nrf2/ARE pathway.
Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Animais , Antioxidantes/metabolismo , Apoptose/genética , Hidrolases de Éster Carboxílico/genética , Bovinos , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Células Epiteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Glândulas Mamárias Animais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/genéticaRESUMO
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong coupling expansion. We find all sorts of interesting phases including a pair-density wave, a charge 4e (and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-wave, spin-density-wave, and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e., the ratio of characteristic phonon frequency to the strength of interactions.
RESUMO
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10-4 to 5.46 × 10-2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
RESUMO
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
RESUMO
Feed intake is a major factor in maintaining the balance between ruminal fermentation and the microbial community of dairy cows. To explore the relationship among feed intake, microbial metabolism, and ruminal fermentation, we examined the combined signatures of the microbiome and metabolome in dairy cows with different feed intake levels. Eighteen dairy cows were allocated to high feed intake (HFI), medium feed intake (MFI), and low feed intake (LFI) groups according to their average daily feed intake. 16S rDNA sequencing results revealed that the relative abundance of Firmicutes in the HFI group was significantly higher than that in the MFI and LFI groups (P < 0.05). The ratio of Bacteroidetes to Firmicutes was significantly lower in the HFI group than in the MFI and LFI groups (P < 0.05). The relative abundance of Lachnospiraceae_unclassified, Veillonellaceae_unclassified, and Saccharofermentants was significantly higher in the HFI group than in the LFI and MFI groups (P < 0.05). The relative abundance of Erysipelotrichaceae_unclassified and Butyrivibrio was significantly higher in the HFI group than in the MFI and LFI groups (P < 0.05). Ultra high performance liquid chromatography-mass spectrometry revealed five key pathways, including the linoleic acid metabolism pathway, alpha-linolenic acid metabolism, arginine and proline metabolism, glutathione metabolism, and valine, leucine, and isoleucine biosynthesis, which are closely related to energy and amino acid metabolism. Linoleic acid, glutamate, alpha-linolenic acid, l-methionine, and l-valine levels were significantly lower in the HFI group than in the MFI and LFI groups (q < 0.05), while the relative content of glutamate was significantly lower in the MFI group than in the LFI group (q < 0.05). Stearic acid content was significantly higher in the HFI group than in the LFI group (q < 0.05). Our findings provide insight into the rumen microbiome of dairy cows with different feed intake and the metabolic pathways closely associated with feed intake in early-lactating cows. The candidates involved in these metabolic pathways may be useful for identifying variations in feed intake. The signatures of the rumen microbiome and metabolome in dairy cows may help make decisions regarding feeding.
Assuntos
Bactérias/classificação , Bovinos/microbiologia , Ingestão de Alimentos , Microbioma Gastrointestinal , Metaboloma , Leite/metabolismo , Ração Animal/análise , Animais , Bactérias/genética , Bovinos/metabolismo , Cromatografia Líquida de Alta Pressão/veterinária , Indústria de Laticínios , Dieta/veterinária , Digestão , Feminino , Fermentação , Lactação , Espectrometria de Massas/veterinária , Rúmen/metabolismo , Rúmen/microbiologiaRESUMO
Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) is an E3 ligase of ubiquitin fold modifier 1 (UFM1), which can act together with its target protein to inhibit the apoptosis of cells. Lipopolysaccharides (LPS) can affect the ovarian health of female animals by affecting the apoptosis of ovarian granulosa cells. The physiological function of UFL1 on the apoptosis of bovine (ovarian) granulosa cells (bGCs) remains unclear; therefore, we focused on the modulating effect of UFL1 on the regulation of LPS-induced apoptosis in ovarian granulosa cells. Our study found that UFL1 was expressed in both the nucleus and cytoplasm of bGCs. The results here demonstrated that LPS caused a significant increase in the apoptosis level of bGCs in cows, and also dramatically increased the expression of UFL1. Furthermore, we found that UFL1 depletion caused a significant increase in apoptosis (increased the expression of BAX/BCL-2 and the activity of caspase-3). Conversely, the overexpression of UFL1 relieved the LPS-induced apoptosis. In order to assess whether the inhibition of bGCs apoptosis involved in the nuclear factor-κB (NF-κB) signaling pathway resulted from UFL1, we detected the expression of NF-κB p-p65. LPS treatment resulted in a significant upregulation in the protein concentration of NF-κB p-p65, and knockdown of UFL1 further increased the phosphorylation of NF-κB p65, while UFL1 overexpression significantly inhibited the expression of NF-κB p-p65. Collectively, UFL1 could suppress LPS-induced apoptosis in cow ovarian granulosa cells, likely via the NF-κB pathway. These results identify a novel role of UFL1 in the modulation of bGC apoptosis, which may be a potential signaling target to improve the reproductive health of dairy cows.
Assuntos
Células da Granulosa/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bovinos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Células da Granulosa/fisiologia , Lipopolissacarídeos/farmacologia , Ovário/metabolismo , Ovário/fisiologia , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/fisiologiaRESUMO
Heat stress is one of the wide varieties of factors which cause oxidative stress in vivo; elevated temperature can lead to oxidative stress of dairy cows that affects milk production. The aim of this study was to determine the capacity of the betaine to act as an antioxidant against oxidative stress induced by heat exposure and apoptosis in mammary epithelial cells (mammary alveolar cells, MAC-T). The MAC-T were divided into four treatment groups: control (37 °C), heat stress (HS, 42 °C), betaine (37 °C), and HS + betaine. MAC-T under heat stress (HS) showed increased ROS accumulation, malondialdehyde (MDA) content, superoxide dismutase (SOD) concentration, and catalase (CAT) activity. During heat stress, betaine decreased the mRNA expression level of HSP70 and HSP27 in MAC-T. Bax/Bcl-2 ratio and caspase-3, the markers of apoptosis, were also elevated in MAC-T under heat stress. The markers of oxidative stress Nrf-2/HO-1 genes were also elevated in MAC-T under heat stress. Pretreatment of betaine reversed the heat-induced depletion in total antioxidant status, ROS accumulation, and SOD and CAT contents in MAC-T. Bax/Bcl-2 ratio and Nrf-2/HO-1 expression of heat-exposed MAC-T were also reduced with betaine supplementation. In conclusion, betaine alleviated oxidative stress and apoptosis of MAC-T by inhibiting ROS accumulation.
Assuntos
Apoptose/efeitos dos fármacos , Betaína/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/metabolismo , Catalase/metabolismo , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Proteínas de Choque Térmico HSP72/metabolismo , Heme Oxigenase-1/metabolismo , Malondialdeído/metabolismo , Glândulas Mamárias Animais/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
OBJECTIVE: The aim of the study was to investigate the effect of zinc-bearing palygorskite (Zn-Pal) on rumen fermentation by in vitro gas-production system. METHODS: In trial, 90 incubators were evenly divided into five groups: control (0% Zn-Pal), treatment I (0.2% Zn-Pal), treatment II (0.4% Zn-Pal), treatment III (0.6% Zn-Pal), and treatment IV (0.8% Zn-Pal). The contents of zinc for treatments were 0, 49, 98, 147, 196 mg/kg, respectively. The main chemical composition and microstructure of Zn-Pal was investigated by X-ray diffraction. The physicochemical features were evaluated by Zeta potential analysis, cation-exchange capacity, ethylene blue absorption and specific surface area (the Brunauer-Emmett-Teller method). In vitro gas production (GP) was recorded at 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 h incubation. Incubation was stopped at 0, 6, 12, 24, 48, and 72 h and the inoculants were tested for pH, microbial protein yield (MCP), NH3-N, volatile fatty acids (VFAs), lipopolysaccharide (LPS). RESULTS: The results showed that the GP in the treatment groups was not significantly different from the control groups (p>0.05). Compared to the control group, pH was higher at 24 h, 48 h (p<0.05), and 72 h (p<0.01) (range 6 to 7). The concentration of NH3-N in the three treatment groups was higher than in the control group at 24 h (p<0.01), meanwhile, it was lower at 48 h and 72 h (p<0.01), except in the treatment IV. The concentration of MCP in treatment I group was higher than in the control at 48 h (p<0.01). Compared with control, the LPS concentration in treatment III became lower at 12 h (p<0.05). Total VFAs in treatments were higher than in the control at 24 h, 48 h (p<0.05). CONCLUSION: These results suggest that the addition of Zn-Pal can improve the rumen fermentation, especially when adding 0.2% Zn-Pal.
RESUMO
We study the entanglement in momentum space of the ground state of a disordered one-dimensional fermion lattice model with attractive interaction. We observe two components in the entanglement spectrum, one of which is related to paired-fermion entanglement and contributes to the long-range correlation in position space. The vanishing point of it indicates the localization phenomenon in the ground state of this model. Additionally, by method of entanglement spectrum, we provide a new evidence to show the transition of two phases induced by interaction, and find that this phase transition is not influenced by the disorder. Our result show key characteristics in entanglement for different phases in the system, and provide a novel perspective to understand localization phenomena.