Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037446

RESUMO

The increasing availability and complexity of next generation sequencing (NGS) datasets make ongoing training an essential component of conservation and population genetics research. A workshop entitled "ConGen 2018" was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g. Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.

2.
Trends Ecol Evol ; 34(7): 641-654, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904190

RESUMO

Aquatic species represent a vast diversity of metazoans, provide humans with the most abundant animal protein source, and are of increasing conservation concern, yet landscape genomics is dominated by research in terrestrial systems. We provide researchers with a roadmap to plan aquatic landscape genomics projects by aggregating spatial and software resources and offering recommendations from sampling to data production and analyses, while cautioning against analytical pitfalls. Given the unique properties of water, we discuss the importance of considering freshwater system structure and marine abiotic properties when assessing genetic diversity, population connectivity, and signals of natural selection. When possible, genomic datasets should be parsed into neutral, adaptive, and sex-linked datasets to generate the most accurate inferences of eco-evolutionary processes.


Assuntos
Genética Populacional , Genômica , Animais , Clima , Variação Genética , Seleção Genética
3.
Evol Appl ; 11(7): 1149-1161, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30026803

RESUMO

Genetic monitoring estimates temporal changes in population parameters from molecular marker information. Most populations are complex in structure and change through time by expanding or contracting their geographic range, becoming fragmented or coalescing, or increasing or decreasing density. Traditional approaches to genetic monitoring rely on quantifying temporal shifts of specific population metrics-heterozygosity, numbers of alleles, effective population size-or measures of geographic differentiation such as FST. However, the accuracy and precision of the results can be heavily influenced by the type of genetic marker used and how closely they adhere to analytical assumptions. Care must be taken to ensure that inferences reflect actual population processes rather than changing molecular techniques or incorrect assumptions of an underlying model of population structure. In many species of conservation concern, true population structure is unknown, or structure might shift over time. In these cases, metrics based on inappropriate assumptions of population structure may not provide quality information regarding the monitored population. Thus, we need an inference model that decouples the complex elements that define population structure from estimation of population parameters of interest and reveals, rather than assumes, fine details of population structure. Encompassing a broad range of possible population structures would enable comparable inferences across biological systems, even in the face of range expansion or contraction, fragmentation, or changes in density. Currently, the best candidate is the spatial Λ-Fleming-Viot (SLFV) model, a spatially explicit individually based coalescent model that allows independent inference of two of the most important elements of population structure: local population density and local dispersal. We support increased use of the SLFV model for genetic monitoring by highlighting its benefits over traditional approaches. We also discuss necessary future directions for model development to support large genomic datasets informing real-world management and conservation issues.

4.
Evol Appl ; 10(2): 146-160, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28127391

RESUMO

Effective population size (Ne ) is among the most important metrics in evolutionary biology. In natural populations, it is often difficult to collect adequate demographic data to calculate Ne directly. Consequently, genetic methods to estimate Ne have been developed. Two Ne estimators based on sibship reconstruction using multilocus genotype data have been developed in recent years: sibship assignment and parentage analysis without parents. In this study, we evaluated the accuracy of sibship reconstruction using a large empirical dataset from five hatchery steelhead populations with known pedigrees and using 95 single nucleotide polymorphism (SNP) markers. We challenged the software COLONY with 2,599,961 known relationships and demonstrated that reconstruction of full-sib and unrelated pairs was greater than 95% and 99% accurate, respectively. However, reconstruction of half-sib pairs was poor (<5% accurate). Despite poor half-sib reconstruction, both estimators provided accurate estimates of the effective number of breeders (Nb ) when sample sizes were near or greater than the true Nb and when assuming a monogamous mating system. We further demonstrated that both methods provide roughly equivalent estimates of Nb . Our results indicate that sibship reconstruction and current SNP panels provide promise for estimating Nb in steelhead populations in the region.

5.
Conserv Biol ; 31(1): 136-149, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27214122

RESUMO

Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Incerteza , Animais , Clima , Ecossistema
6.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881749

RESUMO

Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.


Assuntos
Alelos , Hibridização Genética , Oncorhynchus/genética , Seleção Genética , Animais , Genótipo , Espécies Introduzidas , Oncorhynchus/classificação
8.
Mol Ecol ; 25(3): 689-705, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26677031

RESUMO

Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.


Assuntos
Adaptação Fisiológica/genética , Clima , Genética Populacional , Oncorhynchus mykiss/genética , Animais , Teorema de Bayes , Ecossistema , Variação Genética , Modelos Genéticos , Noroeste dos Estados Unidos , Polimorfismo de Nucleotídeo Único , Temperatura Ambiente , Movimentos da Água
9.
Glob Chang Biol ; 21(7): 2510-2524, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25656972

RESUMO

Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4-7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = -0.77; P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

10.
Trends Ecol Evol ; 30(3): 161-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650350

RESUMO

Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.


Assuntos
Evolução Biológica , Ecossistema , Metagenômica , Adaptação Fisiológica/genética , Conservação dos Recursos Naturais , Variação Genética , Genética Populacional
11.
Mol Ecol ; 23(24): 5943-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319129

RESUMO

Puritz et al. provide a review of several RADseq methodological approaches in response to our 'Population Genomic Data Analysis' workshop (Sept 2013) review (Andrews & Luikart 2014). We agree with Puritz et al. on the importance for researchers to thoroughly understand RADseq library preparation and data analysis when choosing an approach for answering their research questions. Some of us are currently using multiple RADseq protocols, and we agree that the different methods may offer advantages in different cases. Our workshop review did not intend to provide a thorough review of RADseq because the workshop covered a broad range of topics within the field of population genomics. Similarly, neither the response of Puritz et al. nor our comments here provide sufficient space to thoroughly review RADseq. Nonetheless, here we address some key points that we find unclear or potentially misleading in their evaluation of techniques.


Assuntos
Metagenômica/métodos , Mapeamento por Restrição/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA