Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain ; 143(2): 452-466, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040565

RESUMO

Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.

2.
Int J Cardiol ; 302: 53-58, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932116

RESUMO

BACKGROUND: Variation in patient characteristics and practice patterns may influence outcomes at a regional level. METHODS: We assessed differences in demographics, practice patterns, outcomes, and the effect of apixaban compared with warfarin in ARISTOTLE (n = 18,201) by prespecified regions: North America, Latin America, Europe, and Asia Pacific. The primary outcomes were stroke/systemic embolism and major bleeding. RESULTS: Compared with other regions, patients from Asia Pacific were younger, more women were enrolled in Latin America. Coronary artery disease was more prevalent in Europe and Asia Pacific had the highest rate of prior stroke and renal impairment. Over 50% of patients in North America were taking ≥9 drugs at randomization, compared with 10% in Latin America. North America had the highest rates of temporary study drug discontinuation and procedures. Time in therapeutic range (INR 2.0-3.0) on warfarin was highest in North America and lowest in Asia Pacific. After adjustment and compared with Europe, patients in Asia Pacific had 2-fold higher risk of stroke/systemic embolism and 3-fold higher risk of intracranial hemorrhage. Patients in Latin America had 2-fold increased risk of all-cause death compared with Europe. The benefits of apixaban compared with warfarin were consistent across regions; there was a pronounced reduction in major bleeding in patients from Asia Pacific compared with other regions (p-interaction = 0.03). CONCLUSIONS: Patients with AF enrolled in prespecified regions in ARISTOTLE had differences in clinical baseline characteristics and practice patterns. After adjustment, patients in Asia Pacific and Latin America had worse outcomes than patients from other regions. The relative benefits of apixaban compared with warfarin were consistent across regions with an even greater treatment effect in the reduction of bleeding in patients from Asia Pacific.

4.
Sci Rep ; 9(1): 17560, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772215

RESUMO

The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy.

5.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673819

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Assuntos
Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Inativação do Cromossomo X , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Prognóstico , Piruvato Desidrogenase (Lipoamida)/deficiência , Gêmeos Monozigóticos
6.
Neuromuscul Disord ; 29(11): 827-841, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31727541

RESUMO

Whole-body magnetic resonance imaging has emerged as a useful imaging tool in diagnosing and characterizing the progression of myopathies and muscular dystrophies. Whole-body MRI indications and diagnostic efficacy are becoming better defined with the increasing number of cases, publications and discussions within multidisciplinary working groups. Advanced Whole-body MRI protocols are rapid, lower cost, and well-tolerated by patients. Accurate interpretation of muscle Whole-body MRI requires a detailed knowledge of muscle anatomy and differential pattern of involvement in muscle diseases. With the surge in recently identified novel genetic myopathies, Whole-body MRI will become increasingly useful for phenotypic validation of genetic variants of unknown significance. In addition, Whole-body MRI will be progressively used as a biomarker for disease progression and quantify response to therapy with the emergence of novel disease modifying treatments. This review outlines Whole-body MRI indications and updates refined protocols and provides a comprehensive overview of the diagnostic utility and suggested methodology of Whole-body MRI for pediatric and adult patients with muscle diseases.

7.
Front Pharmacol ; 10: 953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555136

RESUMO

Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps-ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein-protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.

8.
Neuromuscul Disord ; 29(10): 747-757, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31561939

RESUMO

Diagnosis of inherited myopathies can be a challenging and lengthy process due to broad genetic and phenotypic heterogeneity. In this study we applied focused exome sequencing to investigate a cohort of 100 complex adult myopathy cases who remained undiagnosed despite extensive investigation. We evaluated the frequency of genetic diagnoses, clinical and pathological factors most likely to be associated with a positive diagnosis, clinical pitfalls and new phenotypic insights that could help to guide future clinical practice. We identified pathogenic/likely pathogenic variants in 32/100 cases. TTN-related myopathy was the most common diagnosis (4/32 cases) but the majority of positive diagnoses related to a single gene each. Childhood onset of symptoms was more likely to be associated with a positive diagnosis. Atypical and new clinico-pathological phenotypes with diagnostic pitfalls were identified. These include the new emerging group of neuromyopathy genes (HSPB1, BICD2) and atypical biopsy findings: COL6A-related myopathy with mitochondrial features, DOK7 presenting as myopathy with minicores and DES-related myopathy without myofibrillar pathology. Our data demonstrates the diagnostic efficacy of broad NGS screening when combined with detailed clinico-pathological phenotyping in a complex neuromuscular cohort. Atypical clinico-pathological features may delay the diagnostic process if smaller targeted gene panels are used.

9.
Lancet Neurol ; 18(9): 834-844, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31397289

RESUMO

BACKGROUND: Inclusion body myositis is an idiopathic inflammatory myopathy and the most common myopathy affecting people older than 50 years. To date, there are no effective drug treatments. We aimed to assess the safety, efficacy, and tolerability of bimagrumab-a fully human monoclonal antibody-in individuals with inclusion body myositis. METHODS: We did a multicentre, double-blind, placebo-controlled study (RESILIENT) at 38 academic clinical sites in Australia, Europe, Japan, and the USA. Individuals (aged 36-85 years) were eligible for the study if they met modified 2010 Medical Research Council criteria for inclusion body myositis. We randomly assigned participants (1:1:1:1) using a blocked randomisation schedule (block size of four) to either bimagrumab (10 mg/kg, 3 mg/kg, or 1 mg/kg) or placebo matched in appearance to bimagrumab, administered as intravenous infusions every 4 weeks for at least 48 weeks. All study participants, the funder, investigators, site personnel, and people doing assessments were masked to treatment assignment. The primary outcome measure was 6-min walking distance (6MWD), which was assessed at week 52 in the primary analysis population and analysed by intention-to-treat principles. We used a multivariate normal repeated measures model to analyse data for 6MWD. Safety was assessed by recording adverse events and by electrocardiography, echocardiography, haematological testing, urinalysis, and blood chemistry. This trial is registered with ClinicalTrials.gov, number NCT01925209; this report represents the final analysis. FINDINGS: Between Sept 26, 2013, and Jan 6, 2016, 251 participants were enrolled to the study, of whom 63 were assigned to each bimagrumab group and 62 were allocated to the placebo group. At week 52, 6MWD change from baseline did not differ between any bimagrumab dose and placebo (least squares mean treatment difference for bimagrumab 10 mg/kg group, 17·6 m, SE 14·3, 99% CI -19·6 to 54·8; p=0·22; for 3 mg/kg group, 18·6 m, 14·2, -18·2 to 55·4; p=0·19; and for 1 mg/kg group, -1·3 m, 14·1, -38·0 to 35·4; p=0·93). 63 (100%) participants in each bimagrumab group and 61 (98%) of 62 in the placebo group had at least one adverse event. Falls were the most frequent adverse event (48 [76%] in the bimagrumab 10 mg/kg group, 55 [87%] in the 3 mg/kg group, 54 [86%] in the 1 mg/kg group, and 52 [84%] in the placebo group). The most frequently reported adverse events with bimagrumab were muscle spasms (32 [51%] in the bimagrumab 10 mg/kg group, 43 [68%] in the 3 mg/kg group, 25 [40%] in the 1 mg/kg group, and 13 [21%] in the placebo group) and diarrhoea (33 [52%], 28 [44%], 20 [32%], and 11 [18%], respectively). Adverse events leading to discontinuation were reported in four (6%) participants in each bimagrumab group compared with one (2%) participant in the placebo group. At least one serious adverse event was reported by 21 (33%) participants in the 10 mg/kg group, 11 (17%) in the 3 mg/kg group, 20 (32%) in the 1 mg/kg group, and 20 (32%) in the placebo group. No significant adverse cardiac effects were recorded on electrocardiography or echocardiography. Two deaths were reported during the study, one attributable to subendocardial myocardial infarction (secondary to gastrointestinal bleeding after an intentional overdose of concomitant sedatives and antidepressants) and one attributable to lung adenocarcinoma. Neither death was considered by the investigator to be related to bimagrumab. INTERPRETATION: Bimagrumab showed a good safety profile, relative to placebo, in individuals with inclusion body myositis but did not improve 6MWD. The strengths of our study are that, to the best of our knowledge, it is the largest randomised controlled trial done in people with inclusion body myositis, and it provides important natural history data over 12 months. FUNDING: Novartis Pharma.

10.
Epilepsia Open ; 4(3): 498-503, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31440732

RESUMO

SCN4A gene mutations cause a number of neuromuscular phenotypes including myotonia. A subset of infants with myotonia-causing mutations experience severe life-threatening episodic laryngospasm with apnea. We have recently identified similar SCN4A mutations in association with sudden infant death syndrome. Laryngospasm has also been proposed as a contributory mechanism to some cases of sudden unexpected death in epilepsy (SUDEP). We report an infant with EEG-confirmed seizures and recurrent apneas. Whole-exome sequencing identified a known pathogenic mutation in the SCN4A gene that has been reported in several unrelated families with myotonic disorder. We propose that the SCN4A mutation contributed to the apneas in our case, irrespective of the underlying cause of the epilepsy. We suggest this supports the notion that laryngospasm may contribute to some cases of SUDEP, and implicates a possible shared mechanism between a proportion of sudden infant deaths and sudden unexpected deaths in epilepsy.

11.
Neurology ; 93(9): e895-e907, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31391248

RESUMO

OBJECTIVE: To investigate the use of muscle MRI for the differential diagnosis and as a disease progression biomarker for 2 major forms of motor neuron disorders: spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS). METHODS: We applied quantitative 3-point Dixon and semiquantitative T1-weighted and short tau inversion recovery (STIR) imaging to bulbar and lower limb muscles and performed clinical and functional assessments in ALS (n = 21) and SBMA (n = 21), alongside healthy controls (n = 16). Acquired images were analyzed for the presence of fat infiltration or edema as well as specific patterns of muscle involvement. Quantitative MRI measurements were correlated with clinical measures of disease severity in ALS and SBMA. RESULTS: Quantitative imaging revealed significant fat infiltration in bulbar (p < 0.001) and limb muscles in SBMA compared to controls (thigh: p < 0.001; calf: p = 0.001), identifying a characteristic pattern of muscle involvement. In ALS, semiquantitative STIR imaging detected marked hyperintensities in lower limb muscles, distinguishing ALS from SBMA and controls. Finally, MRI measurements correlated significantly with clinical scales of disease severity in both ALS and SBMA. CONCLUSIONS: Our findings show that muscle MRI differentiates between SBMA and ALS and correlates with disease severity, supporting its use as a diagnostic tool and biomarker for disease progression. This highlights the clinical utility of muscle MRI in motor neuron disorders and contributes to establish objective outcome measures, which is crucial for the development of new drugs.

12.
J Clin Med ; 8(7)2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288420

RESUMO

TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases.

13.
Ann Neurol ; 86(2): 310-315, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187502

RESUMO

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.

14.
J Neurol Neurosurg Psychiatry ; 90(11): 1270-1275, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31171583

RESUMO

Identifying effective disease-modifying therapies for neurological diseases remains an important challenge in drug discovery and development. Drug repurposing attempts to determine new indications for pre-existing compounds and represents a major opportunity to address this clinically unmet need. It is potentially more cost-effective and time-efficient than de novo drug development and has yielded notable successes in neurological disorders. However, across all medical disciplines, only 30% of repurposed drugs, and 10% of novel candidate molecules, gain market approval. One potentially significant contributor towards this limited success rate is an incomplete knowledge of the exposure-response relationships for the compounds of interest, and how these relate to the new indication, prior to commencing a new trial. We provide an overview of the current approach to early-stage drug repurposing and consider the issues contributing to inconclusive, or possibly falsely negative, Phase II and III trial outcomes in neurological diseases by highlighting examples that illustrate the limitations of empirical evidence generation without a strong scientific basis for the dose rationale. We conclude with a framework suggesting a translational, iterative approach, that integrates pharmacological, pharmaceutical and clinical expertise, towards preclinical and early clinical drug development. This ensures appropriate dosing regimen, route of administration and/or formulation are selected for the new indication before their evaluation in prospective clinical trials.

16.
Ann Clin Transl Neurol ; 6(6): 1033-1045, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31211167

RESUMO

Objective: Limb girdle muscular dystrophy type R9 (LGMD R9) is an autosomal recessive muscle disease for which there is currently no causative treatment. The development of putative therapies requires sensitive outcome measures for clinical trials in this slowly progressing condition. This study extends functional assessments and MRI muscle fat fraction measurements in an LGMD R9 cohort across 6 years. Methods: Twenty-three participants with LGMD R9, previously assessed over a 1-year period, were re-enrolled at 6 years. Standardized functional assessments were performed including: myometry, timed tests, and spirometry testing. Quantitative MRI was used to measure fat fraction in lower limb skeletal muscle groups. Results: At 6 years, all 14 muscle groups assessed demonstrated significant increases in fat fraction, compared to eight groups in the 1-year follow-up study. In direct contrast to the 1-year follow-up, the 6-min walk test, 10-m walk or run, timed up and go, stair ascend, stair descend and chair rise demonstrated significant decline. Among the functional tests, only FVC significantly declined over both the 1- and 6-year studies. Interpretation: These results further support fat fraction measurements as a primary outcome measure alongside functional assessments. The most appropriate individual muscles are the vastus lateralis, gracilis, sartorius, and gastrocnemii. Using composite groups of lower leg muscles, thigh muscles, or triceps surae, yielded high standardized response means (SRMs). Over 6 years, quantitative fat fraction assessment demonstrated higher SRM values than seen in functional tests suggesting greater responsiveness to disease progression.

17.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039582

RESUMO

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.

18.
Ann Rheum Dis ; 78(7): 996-1002, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31138531

RESUMO

OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are a spectrum of rare autoimmune diseases characterised clinically by muscle weakness and heterogeneous systemic organ involvement. The strongest genetic risk is within the major histocompatibility complex (MHC). Since autoantibody presence defines specific clinical subgroups of IIM, we aimed to correlate serotype and genotype, to identify novel risk variants in the MHC region that co-occur with IIM autoantibodies. METHODS: We collected available autoantibody data in our cohort of 2582 Caucasian patients with IIM. High resolution human leucocyte antigen (HLA) alleles and corresponding amino acid sequences were imputed using SNP2HLA from existing genotyping data and tested for association with 12 autoantibody subgroups. RESULTS: We report associations with eight autoantibodies reaching our study-wide significance level of p<2.9×10-5. Associations with the 8.1 ancestral haplotype were found with anti-Jo-1 (HLA-B*08:01, p=2.28×10-53 and HLA-DRB1*03:01, p=3.25×10-9), anti-PM/Scl (HLA-DQB1*02:01, p=1.47×10-26) and anti-cN1A autoantibodies (HLA-DRB1*03:01, p=1.40×10-11). Associations independent of this haplotype were found with anti-Mi-2 (HLA-DRB1*07:01, p=4.92×10-13) and anti-HMGCR autoantibodies (HLA-DRB1*11, p=5.09×10-6). Amino acid positions may be more strongly associated than classical HLA associations; for example with anti-Jo-1 autoantibodies and position 74 of HLA-DRB1 (p=3.47×10-64) and position 9 of HLA-B (p=7.03×10-11). We report novel genetic associations with HLA-DQB1 anti-TIF1 autoantibodies and identify haplotypes that may differ between adult-onset and juvenile-onset patients with these autoantibodies. CONCLUSIONS: These findings provide new insights regarding the functional consequences of genetic polymorphisms within the MHC. As autoantibodies in IIM correlate with specific clinical features of disease, understanding genetic risk underlying development of autoantibody profiles has implications for future research.

19.
Muscle Nerve ; 60(2): 161-168, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31107564

RESUMO

INTRODUCTION: The Inclusion Body Myositis Functional Rating Scale (IBMRFS) is a 10-item clinician-rated ordinal scale developed for people with inclusion body myositis. METHODS: Single observations of the IBMFRS were collected from 132 patients. After Rasch analysis, modifications were made to the scale to optimize fit to the Rasch model while maintaining clinical validity and utility. RESULTS: The original IBMFRS did not fit the assumptions of the Rasch model because of multidimensionality of the scale. Items assessed local dependence, disordered step thresholds, and differential item functioning. Deconstructing the scale into upper limb (IBMFRS-UL) and lower limb (IBMFRS-LL) scales improved fit to the Rasch model. A 9-item scale with the swallowing item removed (IBMFRS-9) remained multidimensional but demonstrated the ability to discriminate patients along the severity continuum. IBMFRS-UL, IBMFRS-LL, and IBMFRS-9 scores were transformed to a 0-100 scale for comparability. DISCUSSION: This analysis has led to the development of 3 optimized versions of the IBMFRS. Muscle Nerve 60: 161-168, 2019.


Assuntos
Extremidade Inferior/fisiopatologia , Miosite de Corpos de Inclusão/fisiopatologia , Extremidade Superior/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicometria , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
20.
Neurol Genet ; 5(2): e322, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31119193

RESUMO

Objective: To characterize the phenotype in individuals with OPA3-related autosomal dominant optic atrophy and cataract (ADOAC) and peripheral neuropathy (PN). Methods: Two probands with multiple affected relatives and one sporadic case were referred for evaluation of a PN. Their phenotype was determined by clinical ± neurophysiological assessment. Neuropathologic examination of sural nerve and skeletal muscle, and ultrastructural analysis of mitochondria in fibroblasts were performed in one case. Exome sequencing was performed in the probands. Results: The main clinical features in one family (n = 7 affected individuals) and one sporadic case were early-onset cataracts (n = 7), symptoms of gastrointestinal dysmotility (n = 8), and possible/confirmed PN (n = 7). Impaired vision was an early-onset feature in another family (n = 4 affected individuals), in which 3 members had symptoms of gastrointestinal dysmotility and 2 developed PN and cataracts. The less common features among all individuals included symptoms/signs of autonomic dysfunction (n = 3), hearing loss (n = 3), and recurrent pancreatitis (n = 1). In 5 individuals, the neuropathy was axonal and clinically asymptomatic (n = 1), sensory-predominant (n = 2), or motor and sensory (n = 2). In one patient, nerve biopsy revealed a loss of large and small myelinated fibers. In fibroblasts, mitochondria were frequently enlarged with slightly fragmented cristae. The exome sequencing identified OPA3 variants in all probands: a novel variant (c.23T>C) and the known mutation (c.313C>G) in OPA3. Conclusions: A syndromic form of ADOAC (ADOAC+), in which axonal neuropathy may be a major feature, is described. OPA3 mutations should be included in the differential diagnosis of complex inherited PN, even in the absence of clinically apparent optic atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA