Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 742: 140677, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32721756

RESUMO

Dechlorane Plus (DP) is a chlorinated flame retardant applied in parallel to or as a replacement product for regulated flame retardants. Detection of DP in environmental media all over the world in recent years necessitates the development of detailed global emission estimates for environmental model studies. Based on production, usage and disposal data two global atmospheric emission scenarios were made with a detailed geographical distribution. The total DP emission is estimated to be 0.02 t/year and 3.2 t/year in a low and high emission scenario, respectively, reflecting the uncertainties in production volumes and emission factors. The emission estimates are tested by implementation in the Danish Eulerian Hemispheric Model, an advanced chemistry-transport model. An evaluation against measurements in the Arctic from the early 2010s, considered to represent background concentrations, shows that the predicted concentration range for the high emission scenario is in line with the measured range, whereas the predicted concentrations for the low emission estimate are more than a factor of 100 lower than the measurements, rendering the high emission estimate most probable.

2.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115

RESUMO

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

3.
Atmos Chem Phys ; 17(13): 8357-8370, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30740128

RESUMO

Cyclic volatile methyl siloxanes (cVMSs) are important components in personal care products that transport and react in the atmosphere. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and their gas-phase oxidation products have been incorporated into the Community Multiscale Air Quality (CMAQ) model. Gas-phase oxidation products, as the precursor to secondary organic aerosol from this compound class, were included to quantify the maximum potential for aerosol formation from gas-phase reactions with OH. Four 1-month periods were modeled to quantify typical concentrations, seasonal variability, spatial patterns, and vertical profiles. Typical model concentrations showed parent compounds were highly dependent on population density as cities had monthly averaged peak D5 concentrations up to 432ngm-3. Peak oxidized D5 concentrations were significantly less, up to 9ngm-3, and were located downwind of major urban areas. Model results were compared to available measurements and previous simulation results. Seasonal variation was analyzed and differences in seasonal influences were observed between urban and rural locations. Parent compound concentrations in urban and peri-urban locations were sensitive to transport factors, while parent compounds in rural areas and oxidized product concentrations were influenced by large-scale seasonal variability in OH.

4.
Int J Environ Res Public Health ; 12(9): 11254-68, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26378551

RESUMO

Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Mudança Climática , Monitoramento Ambiental/métodos , Mercúrio/análise , Modelos Químicos , Regiões Árticas , Humanos
5.
Environ Sci Technol ; 47(1): 502-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23194257

RESUMO

Cyclic volatile methyl siloxanes (cVMS) are present in technical applications and personal care products. They are predicted to undergo long-range atmospheric transport, but measurements of cVMS in remote areas remain scarce. An active air sampling method for decamethylcyclopentasiloxane (D5) was further evaluated to include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and dodecamethylcyclohexasiloxane (D6). Air samples were collected at the Zeppelin observatory in the remote Arctic (79° N, 12° E) with an average sampling time of 81 ± 23 h in late summer (August-October) and 25 ± 10 h in early winter (November-December) 2011. The average concentrations of D5 and D6 in late summer were 0.73 ± 0.31 and 0.23 ± 0.17 ng/m(3), respectively, and 2.94 ± 0.46 and 0.45 ± 0.18 ng/m(3) in early winter, respectively. Detection of D5 and D6 in the Arctic atmosphere confirms their long-range atmospheric transport. The D5 measurements agreed well with predictions from a Eulerian atmospheric chemistry-transport model, and seasonal variability was explained by the seasonality in the OH radical concentrations. These results extend our understanding of the atmospheric fate of D5 to high latitudes, but question the levels of D3 and D4 that have previously been measured at Zeppelin with passive air samplers.


Assuntos
Poluentes Atmosféricos/análise , Siloxanas/análise , Regiões Árticas , Monitoramento Ambiental , Estações do Ano , Volatilização
6.
Environ Sci Technol ; 45(8): 3349-54, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21438524

RESUMO

The global distribution of linear and cyclic volatile methyl silxoanes (VMS) was investigated at 20 sites worldwide, including 5 locations in the Arctic, using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers. Cyclic VMS are currently being considered for regulation because they are high production volume chemicals that are potentially persistent, bioaccumulative, and toxic. Linear and cyclic VMS (including L3, L4, L5, D3, D4, D5, and D6) were analyzed for in air at all urban, background, and Arctic sites. Concentrations of D3 and D4 are significantly correlated, as are D5 and D6, which suggests different sources for these two pairs of compounds. Elevated concentrations of D3 and D4 on the West coast of North America and at high elevation sites suggest these sites are influenced by trans-Pacific transport, while D5 and D6 have elevated concentrations in urban areas, which is most likely due to personal care product use. Measured concentrations of D5 were compared to modeled concentrations generated using both the Danish Eulerian Hemispheric Model (DEHM) and the Berkeley-Trent Global Contaminant Fate Model (BETR Global). The correlation coefficients (r) between the measured and modeled results were 0.73 and 0.58 for the DEHM and BETR models, respectively. Agreement between measurements and models indicate that the sources, transport pathways, and sinks of D5 in the global atmosphere are fairly well understood.


Assuntos
Poluentes Atmosféricos/análise , Siloxanas/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Monitoramento Ambiental , Modelos Químicos , Siloxanas/química , Compostos Orgânicos Voláteis/química
8.
Environ Sci Technol ; 44(14): 5365-70, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568739

RESUMO

Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.


Assuntos
Poluentes Atmosféricos/química , Siloxanas/química , Atmosfera , Modelos Teóricos , Fatores de Tempo
9.
Environ Sci Technol ; 42(8): 2943-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497148

RESUMO

A dynamic snowpack module was implemented in the Danish Eulerian Hemispheric Model Persistant Organic Pollutants (DEHM-POP), an atmospheric chemistry-transport model designed to study the environmental fate of persistent organic pollutants in the Northern Hemisphere. The role of the snowpack on the fate of alpha-hexachlorocyclohexane (alpha-HCH) was investigated by making simulations both with and without the formation of a snowpack and comparing model results with data from 21 air monitoring sites. The inclusion of a dynamic snowpack module in the DEHM-POP model generally improves the fit between modeled and observed alpha-HCH air concentrations for the winter and spring seasons and the overall correlation coefficient between predicted and observed concentrations are improved at 8 of the sites. The predicted snowpack concentrations are in good agreement with the few available snow measurements from the Arctic. The presence of a snowpack increases surface boundary layer air concentrations of alpha-HCH at midlatitudes, while the effect is more pronounced in the Arctic due to the longer periods of snow cover. The results indicate that the snowpack module in DEHM-POP acts as a fast-exchanging temporary storage medium for alpha-HCH, as significant fractions were rapidly revolatilized back into the atmosphere following deposition with snowfall, although the current parametrization for vapor-exchange probably over emphasizes this process. Nonetheless, increased air concentrations observed between March and May ("spring maximum events"; SME) at several high latitude monitoring stations are also predicted by the model. The model results indicate that the SMEs are associated with the revolatilization of previously deposited chemical from the snowpack, following a reduction in the capacity of the snowpack to retain alpha-HCH with increasing temperatures toward the end of the winter period, rather than the actual melting of the snowpack. The SMEs are not predicted at all the Arctic monitoring sites by the model, and the significance of the snowpack in controlling these in the model is, therefore, open to question given the uncertainties in the snow-air partition coefficient (K(sa)) and the reliance of the model on a one-layer snowpack rather than a multilayered snowpack.


Assuntos
Poluentes Atmosféricos/análise , Hexaclorocicloexano/análise , Modelos Químicos , Neve , Simulação por Computador
10.
Environ Sci Technol ; 40(8): 2644-52, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16683604

RESUMO

An arctic snow model was developed to predict the exchange of vapor-phase persistent organic pollutants between the atmosphere and the snowpack over a winter season. Using modeled meteorological data simulating conditions in the Canadian High Arctic, a single-layer snowpack was created on the basis of the precipitation rate, with the snow depth, snow specific surface area, density, and total surface area (TSA) evolving throughout the annual time series. TSA, an important parameter affecting the vapor-sorbed quantity of chemicals in snow, was within a factor of 5 of measured values. Net fluxes for fluorene, phenanthrene, PCB-28 and -52, and alpha- and gamma-HCH (hexachlorocyclohexane) were predicted on the basis of their wet deposition (snowfall) and vapor exchange between the snow and atmosphere. Chemical fluxes were found to be highly dynamic, whereby deposition was rapidly offset by evaporative loss due to snow settling (i.e., changes in TSA). Differences in chemical behavior over the course of the season (i.e., fluxes, snow concentrations) were largely dependent on the snow/air partition coefficients (K(sa)). Chemicals with relatively higher K(sa) values such as alpha- and gamma-HCH were efficiently retained within the snowpack until later in the season compared to fluorene, phenathrene, and PCB-28 and -52. Average snow and air concentrations predicted by the model were within a factor of 5-10 of values measured from arctic field studies, but tended to be overpredicted for those chemicals with higher K(sa) values (i.e., HCHs). Sensitivity analysis revealed that snow concentrations were more strongly influenced by K(sa) than either inclusion of wind ventilation of the snowpack or other changes in physical parameters. Importantly, the model highlighted the relevance of the arctic snowpack in influencing atmospheric concentrations. For the HCHs, evaporative fluxes from snow were more pronounced in April and May, toward the end of the winter, providing evidence that the snowpack plays an important role in influencing the seasonal increase in air concentrations for these compounds at this time of year.


Assuntos
Poluentes Atmosféricos/análise , Modelos Químicos , Neve/química , Poluentes Atmosféricos/química , Canadá , Fluorenos/análise , Fluorenos/química , Gases , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/química , Fenantrenos/análise , Fenantrenos/química , Estações do Ano , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA