Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32799530

RESUMO

Metal ion-linked multilayers offer an easily prepared and modular architecture for controlling energy and electron transfer events on nanoparticle, metal oxide films. However, unlike with planar electrodes, the mesoporous nature of the films inherently limits both the thickness of the multilayer and subsequent diffusion through the pores. Here, we systematically investigated the role of TiO2 nanoparticle film porosity and metal ion-linked multilayer thickness in surface loading, through-pore diffusion, and overall device performance. The TiO2 porosity was controlled by varying TiO2 sintering times. Molecular multilayer thickness was controlled through assembling ZnII-linked bridging molecules (B = p-terphenyl diphosphonic acid) between the metal oxide and the Ru(bpy)2((4,4'-PO3H2)2bpy)]Cl2 dye (RuP), thus producing TiO2-(Bn)-RuP films. Using attenuated total reflectance infrared absorption and UV-vis spectroscopy, we observed that at least two molecular layers (i.e., TiO2-B2 or TiO2-B1-RuP) could be formed on all films but subsequent loading was dependent on the porosity of the TiO2. Rough estimates indicate that in a film with 34 nm average pore diameter, the maximum multilayer film thickness is on the order of 4.6-6 nm, which decreases with decreasing pore size. These films were then incorporated as the photoanodes in dye-sensitized solar cells with cobalt(II/III)tris(4,4'-di-tert-butyl-2,2'-bipyridine) as a redox mediator. In agreement with the surface-loading studies, electrochemical impedance spectroscopy measurements indicate that mediator diffusion is significantly hindered in films with thicker multilayers and less porous TiO2. Collectively, these results show that care must be taken to balance multilayer thickness, substrate porosity, and size of the mediator in designing and maximizing the performance of new multilayer energy and electron management architectures.

2.
J Org Chem ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32815730

RESUMO

Recently, we demonstrated that ylidenemalononitriles (YMs) react with amines to form cyclic amidines and that the starting linear YMs are nonemissive in solution and the cyclic amidines are fluorescent. These turn-on systems were of interest to us because of their potential as biosensors and synthons for accessing functionalized pyridines. While our original method was promising, several limitations persisted, including access to more functionalized and polar-solvent-soluble structures as well as increased control over the rate of cyclization. Herein, we report a new approach that allows the electrophilic substitution of YMs. These substituted YMs exhibit faster turn-on rates, color tunability, access to polar-solvent-soluble species, and increased control over cyclization rate. This allowed us to significantly expand the fluorophore's chemical space.

3.
Inorg Chem ; 2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32806006

RESUMO

Two uranium(III) anilido complexes were synthesized, Tp*2U(NH-C6H4-p-terpyridine) (2-terpy) and Tp*2U(NH-C6H4-p-CH3) (2-ptol), where Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, by protonation of Tp*2UBn (1-Bn; Bn = benzyl) with 4-[2,6-di(pyridin-2-yl)pyridin-4-yl]benzenamine or p-toluidine, respectively. Conversion to the respective uranium(IV) imido species was possible by oxidation and deprotonation, forming Tp*2U(N-C6H4-p-terpyridine) (3-terpy) and Tp*2U(N-C6H4-p-CH3) (3-ptol). These compounds were characterized by multinuclear NMR spectroscopy, IR spectroscopy, electronic absorption spectroscopy, and X-ray crystallography.

4.
Nature ; 583(7816): 396-399, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669698

RESUMO

Curium is unique in the actinide series because its half-filled 5f 7 shell has lower energy than other 5f n configurations, rendering it both redox-inactive and resistant to forming chemical bonds that engage the 5f shell1-3. This is even more pronounced in gadolinium, curium's lanthanide analogue, owing to the contraction of the 4f orbitals with respect to the 5f orbitals4. However, at high pressures metallic curium undergoes a transition from localized to itinerant 5f electrons5. This transition is accompanied by a crystal structure dictated by the magnetic interactions between curium atoms5,6. Therefore, the question arises of whether the frontier metal orbitals in curium(III)-ligand interactions can also be modified by applying pressure, and thus be induced to form metal-ligand bonds with a degree of covalency. Here we report experimental and computational evidence for changes in the relative roles of the 5f/6d orbitals in curium-sulfur bonds in [Cm(pydtc)4]- (pydtc, pyrrolidinedithiocarbamate) at high pressures (up to 11 gigapascals). We compare these results to the spectra of [Nd(pydtc)4]- and of a Cm(III) mellitate that possesses only curium-oxygen bonds. Compared with the changes observed in the [Cm(pydtc)4]- spectra, we observe smaller changes in the f-f transitions in the [Nd(pydtc)4]- absorption spectrum and in the f-f emission spectrum of the Cm(III) mellitate upon pressurization, which are related to the smaller perturbation of the nature of their bonds. These results reveal that the metal orbital contributions to the curium-sulfur bonds are considerably enhanced at high pressures and that the 5f orbital involvement doubles between 0 and 11 gigapascal. Our work implies that covalency in actinides is complex even when dealing with the same ion, but it could guide the selection of ligands to study the effect of pressure on actinide compounds.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32495480

RESUMO

3-Point annulations, or phenalenannulations, transform a benzene ring directly into a substituted pyrene by "wrapping" two new cycles around the perimeter of the central ring at three consecutive carbon atoms. This efficient, modular, and general method for π-extension opens access to non-symmetric pyrenes and their expanded analogues. Potentially, this approach can convert any aromatic ring bearing a -CH2 Br or a -CHO group into a pyrene moiety. Depending upon the workup choices, the process can be directed towards either tin- or iodo-substituted product formation, giving complementary choices for further various cross-coupling reactions. The two-directional bis-double annulation adds two new polyaromatic extensions with a total of six new aromatic rings at a central core.

6.
J Am Chem Soc ; 142(18): 8352-8366, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249571

RESUMO

A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.

7.
Inorg Chem ; 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32283022

RESUMO

In this report, the synthesis and characterization of two bis-cyclometalated iridium(III) complexes are presented. Single-crystal X-ray diffraction shows that [Ir(ppy)2(4,4'-bis(diethylphosphonomethyl)-2,2'-bipyridine)]PF6 adopts a pseudooctahedral geometry. The complexes have an absorption feature in the near-visible-UV region and emit green light with excited-state lifetimes in hundreds of nanoseconds. The redox properties of these complexes show reversible behavior for both oxidative and reductive events. [Ir(ppy)2(4,4'-bis(phosphonomethyl)-2,2'-bipyridine)]PF6 readily binds to metal oxide supports, like nanostructured SnIV-doped In2O3 and TiO2, while still retaining reversible redox chemistry. When incorporated as the photoanode in dye-sensitized solar cells, the devices exhibit open-circuit voltages of >1 V, which is a testament to their strength of these iridium(III) complexes as photochemical oxidants.

8.
ACS Appl Mater Interfaces ; 12(1): 1159-1168, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825589

RESUMO

The interfaces between perovskite and charge transport layers greatly impact the device efficiency and stability of perovskite solar cells (PSCs). Inserting an ultrathin wide-band-gap layer between perovskite and hole transport layers (HTLs) has recently been shown as an effective strategy to enhance device performance. Herein, a small amount of an organic halide salt, N,N'-dimethylethylene-1,2-diammonium iodide, is used to create two-dimensional (2D)-three-dimensional (3D) heterojunctions on MAPbI3 thin film surfaces by facile solution processing. The formation of an ultrathin wide-band-gap 2D perovskite layer on top of 3D MAPbI3 changes the morphological and photophysical properties of perovskite thin films, effectively reduces the surface defects, and suppresses the charge recombination in the interfaces between perovskite and HTL. As a result, a power conversion efficiency of ∼20.2%, with an open-circuit voltage of 1.14 V, a short-circuit current density of 22.57 mA cm-2, and a fill factor of 0.78, is achieved for PSCs with enhanced stability.

9.
J Am Chem Soc ; 141(41): 16279-16287, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31550144

RESUMO

A proton-transfer reaction between squaric acid (H2sq) and 2,3-dimethylpyrazine (2,3-Me2pyz) results in crystallization of a new organic antiferroelectric (AFE), (2,3-Me2pyzH+)(Hsq-)·H2O (1), which possesses a layered structure. The structure of each layer can be described as partitioned into strips lined with methyl groups of the Me2pyzH+ cations and strips featuring extensive hydrogen bonding between the Hsq- anions and water molecules. Variable-temperature dielectric measurements and crystal structures determined through a combination of single-crystal X-ray and neutron diffraction reveal an AFE ordering at 104 K. The phase transition is driven by ordering of protons within the hydrogen-bonded strips. Considering the extent of proton transfer, the paraelectric (PE) state can be formulated as (2,3-Me2pyzH+)2(Hsq23-)(H5O2+), whereas the AFE phase can be described as (2,3-Me2pyzH+)(Hsq-)(H2O). The structural transition caused by the localization of protons results in the change in color from yellow in the PE state to colorless in the AFE state. The occurrence and mechanism of the AFE phase transition have been also confirmed by heat capacity measurements and variable-temperature infrared and Raman spectroscopy. This work demonstrates a potentially promising approach to the design of new electrically ordered materials by engineering molecule-based crystal structures in which hydrogen-bonding interactions are intentionally partitioned into quasi-one-dimensional regions.

11.
J Am Chem Soc ; 141(28): 11298-11303, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265284

RESUMO

Preparing crystalline materials that produce tunable organic-based multicolor emission is a challenge due to the inherent inability to control the packing of organic molecules in the solid state. Utilizing multivariate, high-symmetry metal-organic frameworks, MOFs, as matrices for organic-based substitutional solid solutions allows for the incorporation of multiple fluorophores with different emission profiles into a single material. By combining nonfluorescent links with dilute mixtures of red, green, and blue fluorescent links, we prepared zirconia-type MOFs and found that the bulk materials exhibit features of solution-like fluorescence. Our study found that MOFs with a fluorophore link concentration of around 1 mol % exhibit fluorescence with decreased inner filtering, demonstrated by changes in spectral profiles, increased quantum yields, and lifetime dynamics expected for excited-state proton-transfer emitters. Our findings enabled us to prepare organic-based substitutional solid solutions with tunable chromaticity regulated only by the initial amounts of fluorophores. These materials emit multicolor and white light with high quantum yields (∼2-14%), high color-rendering indices (>93), long shelf life, and superb hydrolytic stability at ambient conditions.

12.
Nat Commun ; 10(1): 695, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741944

RESUMO

The functionality and performance of a semiconductor is determined by its bandgap. Alloying, as for instance in InxGa1-xN, has been a mainstream strategy for tuning the bandgap. Keeping the semiconductor alloys in the miscibility gap (being homogeneous), however, is non-trivial. This challenge is now being extended to halide perovskites - an emerging class of photovoltaic materials. While the bandgap can be conveniently tuned by mixing different halogen ions, as in CsPb(BrxI1-x)3, the so-called mixed-halide perovskites suffer from severe phase separation under illumination. Here, we discover that such phase separation can be highly suppressed by embedding nanocrystals of mixed-halide perovskites in an endotaxial matrix. The tuned bandgap remains remarkably stable under extremely intensive illumination. The agreement between the experiments and a nucleation model suggests that the size of the nanocrystals and the host-guest interfaces are critical for the photo-stability. The stabilized bandgap will be essential for the development of perovskite-based optoelectronics, such as tandem solar cells and full-color LEDs.

13.
Chem Commun (Camb) ; 55(9): 1263-1266, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30632552

RESUMO

Here we report a method for enantioenriching BINOL using a chiral auxiliary and an excited state proton transfer (ESPT) event. Regardless of the starting enantiomeric excess (ee), after irradiation the solution reaches a photostationary state whose ee is dependent solely on the identity of the chiral auxiliary group. The enantioenriched BINOL is easily recovered by cleaving the auxiliary group in mild conditions.

14.
Inorg Chem ; 58(1): 228-233, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30569703

RESUMO

The pressure behavior of crystalline Cs2UO2Cl4 has been explored using a diamond anvil cell. The uranyl fluorescence intensity decreases dramatically with increasing pressure. Using the O-U-O symmetric stretching frequency, an apparent linear decrease in bond length with increasing pressure was observed. A linear decrease in fluorescence intensity with increasing pressure was attributed to a large growth in the nonradiative relaxation, likely attributed to increased relaxation through phonon modes. Quantum theory of atoms in molecules calculations and ab initio wave function methods (CASSCF) support the U≡O bond in UO22+ being highly sensitive to the bond distance, but negligibly affected by the U-Cl bond length.

15.
J Phys Chem Lett ; 9(19): 5810-5821, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30230841

RESUMO

Molecular photon upconversion via triplet-triplet annihilation (TTA-UC) is an intriguing strategy to increase solar cell efficiencies and surpass the Shockley-Quiesser (SQ) limit. In this Perspective, we recount our group's efforts to harness TTA-UC by directly incorporating metal ion linked multilayers of acceptor and sensitizer molecules into an organic-inorganic hybrid solar cell architecture. These self-assembled multilayers facilitate both upconverted emission and photocurrent generation from the upconverted state with a record contribution of 0.158 mA cm-2 under 1 sun solar flux. We recount the progression toward this record and the mechanistic insights learned along the way, summarize the rate- and efficiency-limiting events, and outline improvements that must be made to produce a viable TTA-UC solar cell that can surpass the SQ limit. We also discuss the potential impact that efficient TTA-UC and photocurrent generation could have on existing record solar cells.

16.
Inorg Chem ; 57(20): 12969-12975, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265525

RESUMO

M(TpyNO2)(NO3)3(H2O)·THF (M = La, Nd, Sm, Eu, Tb, Am; TpyNO2 = 4'-nitrophenyl terpyridyl) have been prepared from the reaction of M(NO3)3· nH2O with TpyNO2 in THF. Structural analysis shows that the metal centers are 10-coordinate, providing the first example of AmIII with this coordination number. Further spectroscopic and theoretical evaluation of these complexes reveals utilization of the 5f orbitals in bonding in the AmIII complex. Comparison of Nd-L, Eu-L, and Am-L bond distances demonstrates that some caution should be taken in comparing EuIII versus AmIII in extraction experiments.

17.
Phys Chem Chem Phys ; 20(31): 20513-20524, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046782

RESUMO

Self-assembly of sensitizer and acceptor molecules has recently emerged as a promising strategy to facilitate and harness photon upconversion via triplet-triplet annihilation (TTA-UC). In addition to the energetic requirements, the structure and relative orientation of these molecules can have a strong influence on TTA-UC rates and efficiency. Here we report the synthesis of five different acceptor molecules composed of an anthracene core functionalized with 9,10- or 2,6-phenyl, methyl, or directly bound phosphonic acid groups and their incorporation into self-assembled bilayers on a ZrO2 surface. All five films facilitate green-to-blue photon upconversion with Φuc as high as 0.0023. The efficiency of TTA, and not triplet energy transfer, fluorescence, or losses via FRET, was primarily responsible for dictating the Φuc emission. Even for molecules having similar photophysical properties, variation in the position of the phosphonic acid resulted in dramatically different ΦTTA, Ith values, γTTA, and D. Interestingly, we observed a strong linear correlation between ΦTTA and the Ith value but the cause of this relationship, if any, is unclear.

18.
Chem Commun (Camb) ; 54(54): 7507-7510, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29926021

RESUMO

The separation of metal ions can be challenging because of similarities in charge density, size, and binding affinities. Here, we introduce a new photochemical separation strategy that relies on the intrinsically unique photophysical properties of metal ion complexes and the selective transformation of an electroactive ligand.

19.
Chem Sci ; 9(3): 586-593, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29629122

RESUMO

Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C4N2H14X)4SnX6 (X = Br, I) and (C9NH20)2SbX5 (X = Cl), in which the individual metal halide octahedra (SnX64-) and quadrangular pyramids (SbX52-) are completely isolated from each other and surrounded by the organic ligands C4N2H14X+ and C9NH20+, respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.

20.
Chem Soc Rev ; 47(1): 104-148, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28936536

RESUMO

High surface area metal oxides offer a unique substrate for the assembly of multiple molecular components at an interface. The choice of molecules, metal oxide, and the nature of the assembly method can have a profound influence on the mechanism, rate, and efficiency of photoinduced energy and electron transfer events at the interface. Owing to their diversity and high level of control, these interfacial assemblies are of interest for numerous applications including solar energy conversion, photoelectrosynthesis, photo-writable memory, and more. Although these assemblies are generated with very different goals in mind, they rely on similar surface binding motifs and molecular structure-property relationships. Therefore, the goal of this review is to summarize the various strategies (i.e. co-deposition, axial coordination, metal ion linkages, electrostatics, host-guest interactions, etc.) for assembling chromophores, hosts, electron donors/acceptors, and insulating co-adsorbent molecules on mesoporous metal oxide substrates. The assembly, synthesis, and characterization, as well as subsequent photoinduced events (i.e. cross-surface energy/electron transfer, interchromophore energy transfer, electron injection, and others) are discussed for the various assembly strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA