Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Filtros adicionais











Intervalo de ano
1.
Genet Mol Biol ; 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31259355

RESUMO

Dysphania schraderiana is widely distributed in Lhasa (Tibet, China) and used as a traditional medicine. However, the lack of genetic information hinders the understanding of its physiological processes, such as the biosynthesis of secondary metabolites. Herein, we used Illumina Hiseq4000 platform to sequence the transcriptome of flower and leaf tissues from D. schraderiana for the first time. Totally, 40,142 unigenes were assembled from approximately 5.2 million clean reads. All unigenes underwent gene prediction and were subsequently annotated in a NR (NCBI non-redundant protein) database, COG (Clusters of Orthologous Groups of proteins) database, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database. Among the 40,142 unigenes, 2,579 genes were identified as differentially expressed between flowers and leaves, and used in further enrichment analysis. Also, 2,156 unigenes were annotated as transcription factors. Furthermore, our transcriptome analysis resulted in the identification of candidate unigenes annotated to enzymes involved in terpenoid biosynthesis. Taken together, this work has laid the foundation for the investigation of secondary metabolite biosynthesis and other physiological processes of D. schraderiana.

2.
Emerg Microbes Infect ; 8(1): 734-748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130074

RESUMO

Many pathogens infect hosts through various immune evasion strategies. However, the molecular mechanisms by which pathogen proteins modulate and evade the host immune response remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a pathological strain that can induce mitogen-activated protein (MAP) kinase (Erk, Jnk and p38 MAPK) and NF-κB pathway activation and proinflammatory cytokine production, which then causes diarrheal diseases such as hemorrhagic colitis and hemolytic uremic syndrome. Transforming growth factor ß-activated kinase-1 (TAK1) is a key regulator involved in distinct innate immune signalling pathways. Here we report that EHEC translocated intimin receptor (Tir) protein inhibits the expression of EHEC-induced proinflammatory cytokines by interacting with the host tyrosine phosphatase SHP-1, which is dependent on the phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs). Mechanistically, the association of EHEC Tir with SHP-1 facilitated the recruitment of SHP-1 to TAK1 and inhibited TAK1 phosphorylation, which then negatively regulated K63-linked polyubiquitination of TAK1 and downstream signal transduction. Taken together, these results suggest that EHEC Tir negatively regulates proinflammatory responses by inhibiting the activation of TAK1, which is essential for immune evasion and could be a potential target for the treatment of bacterial infection.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Fatores de Virulência/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Células HEK293 , Humanos , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Células RAW 264.7
3.
Adv Exp Med Biol ; 1024: 37-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28921464

RESUMO

Inflammation is usually the defensive reaction of the immune system to the invasion of pathogen and the exogenous objects. The activation of inflammation helps our body to eliminate pathogenic microbe, virus, and parasite harming our health, while under many circumstances inflammation is the direct cause of the pathological damage in tissues and dysfunction of organs. The posttranslational modification (PTM) of the inflammatory pathways, such as TLR pathways, RLR pathways, NLR pathway, intracellular DNA sensors, intracellular RNA sensors, and inflammasomes, is crucial in the regulation of these signaling trails. Ubiquitination, phosphorylation, polyubiquitination, methylation, and acetylation are the main forms of the PTM, and they respectively play different roles in signaling regulation. The effects of the PTM range from the production of pro-inflammatory factors and the interaction between adaptors and receptors to cell translocation in response to the infectious or other dangerous factors. In this chapter, we will have an overview of the different ways of the posttranslational modifications in different inflammatory signaling pathways and their essential roles in regulation of inflammation.


Assuntos
Regulação da Expressão Gênica/imunologia , Inflamação/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Transdução de Sinais/imunologia , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamassomos , Inflamação/imunologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação , RNA/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Toll-Like/imunologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA