Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(4): 803-812, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564438

RESUMO

Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last follow-up on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.

2.
Esophagus ; 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606768

RESUMO

BACKGROUND: Esophageal motility disorders which include achalasia, esophagogastric junction outflow obstruction (EGJ outflow obstruction), jackhammer esophagus (JE), distal esophageal spasm (DES), etc. are rare disease of unknown causes. The diagnosis is based on endoscopy, barium meal, and high-resolution manometry (HRM). With the development of endoscopy, peroral endoscopic myotomy (POEM) has emerged as a standard method for the treatment of achalasia. PURPOSE: The purpose of this article is to enable gastroenterologists to have a more comprehensive understanding of the application status, technical characteristics, clinical efficacy and future prospect of POEM in the treatment of esophageal motility disorders. METHODS: Through a large number of reading literature, combined with clinical practice, summary and analysis of the indications, procedure, efficacy, complications, and controversies of POEM in the treatment of esophageal motility disorders, as well as the current and future perspectives of POEM were studied. RESULTS: POEM is safe and effective in the treatment of esophageal motility disorders, but the GERD reflux rate is higher. CONCLUSIONS: POEM can be a new option for the treatment of esophageal movement disorders, but large sample, multi-center, long-term study reports are needed, and it promotes the development of NOTES technology.

3.
J Cell Biochem ; 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31353638

RESUMO

MicroRNAs (miRNAs) take part in a variety of biological processes by regulating target genes. Transforming growth factor ß receptor 1 (TGFBR1) and TGFBR2 are crucial members of the TGF-ß family and are serine/threonine kinase receptors. The aim of this study was to explore the functions of ssc-miR-204 in porcine preadipocyte differentiation and apoptosis with regard to the TGFß/Smad pathway. We identified miRNAs predicted to target TGFBR1 and TGFBR2 using a database and selected ssc-miR-204 as a candidate miRNA. ssc-miR-204 overexpression dramatically reduced the levels of TGFBR1 and TGFBR2. However, after transfection with ssc-miR-204 inhibitor, TGFBR1 and TGFBR2 levels were dramatically increased. ssc-miR-204 overexpression dramatically promoted porcine preadipocyte differentiation and apoptosis. After transfection with ssc-miR-204 inhibitor, porcine preadipocyte differentiation and apoptosis were dramatically inhibited. After transfection with ssc-miR-204 mimics, Smad2, Smad3, Smad4, p-Smad2, and p-Smad3 protein levels significantly decreased, and adipogenesis was regulated by inhibiting the TGF-ß/Smad3 signaling pathway. Taken together, these results verified that ssc-miR-204 regulates porcine preadipocyte differentiation and apoptosis by targeting TGFBR1 and TGFBR2.

4.
J Genet ; 98(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31204702

RESUMO

Diagnosis and treatment of velocardiofacial syndrome (VCFS) with variable genotypes and phenotypes are considered to be very complicated. Establishing an exact correlation between the phenotypes and genotypes of VCFS is still a challenging. In this paper, 88 Chinese VCFS patients were divided into five groups based on palatal anomalies and one or two of other four common phenotypes, and copy number variations (CNVs) were detected using multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH) and quantitative polymerase chain reaction. The findings showed that palatal anomalies and characteristic malformation of face were important indicators for 22q11.2 microdeletion, and there was difference inthe phenotypic spectrum between the duplication and deletion of 22q11.2. MLPA was a highly cost-effective, sensitive and preferred method for patients with 22q11.2 deletion or duplication. Our results also firstly reported that all three patients who simultaneously exhibited palatal anomalies and cognitive disorder, without other phenotypes, have Top3b duplication, which strongly suggested that Top3b may be a pathogenic gene for these patients. Further, the findings showed that patients with palatal anomalies and congenital heart disease or immune deficiency, with or without other uncommon phenotypes, exhibited heterogeneity in CNVs, including 4q34.1-qter, 6q25.3, 4q23, Xp11.4, 13q21.1, 17q23.2, 7p21.3, 2p11.2, 11q24.3 and 16q23.3, and some possible pathogenic genes, including BCOR, PRR20A, TBX2, SMYD1, KLKB1 and TULP4 have been suggested. For these patients, aCGH, whole genomic sequencing,combined with references and phenomics database to find pathogenic gene,may be choices of priority. Taking these findings together, we offered an alternative method for diagnosis of Chinese VCFS patients based on this phenotypic strategy.

5.
Am J Orthod Dentofacial Orthop ; 155(5): 642-649, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053279

RESUMO

INTRODUCTION: The purpose of this study was to investigate the effect of systemic delivery of Substance P (SP) on experimental tooth movement. METHODS: Forty-eight adult Sprague-Dawley rats were randomly divided into 2 groups and their maxillary first molars were mesially moved with the use of closed-coil springs. The experiment group received systemic injection of SP and the control group received phosphate-buffered saline solution. Transportation distances of first molars were measured. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, and immunohistochemistry staining were performed to evaluate alveolar bone remodeling. Then the interferon (IFN) γ and tumor necrosis factor (TNF) α concentrations in peripheral blood and local periodontal tissue were measured. Finally, the effects of SP on bone marrow-derived stem cell (BMSC) proliferation and migration were tested in vitro. RESULTS: Systemic delivery of SP significantly increased the distance of tooth movement and stimulated both osteoclast and osteoblast activities. The concentrations of IFN-γ and TNF-α increased in peripheral blood at early phases of the experiment and decreased in periodontal tissue at late phases. In vitro, the proliferation and migration of BMSCs were promoted by SP. CONCLUSIONS: Systemic delivery of SP can accelerate orthodontic tooth movement and promote alveolar bone remodeling potentially through immunomodulation and mobilizing endogenous mesenchymal stem cells.


Assuntos
Processo Alveolar/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Substância P/farmacologia , Técnicas de Movimentação Dentária , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interferon gama/metabolismo , Maxila , Dente Molar , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem , Fator de Necrose Tumoral alfa/metabolismo
6.
Genomics ; 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30818062

RESUMO

Blood components are considered to reflect nutrient metabolism and immune activity in both humans and animals. In this study, we measured 12 blood components in Pekin ducks and performed genome-wide association analysis to identify the QTLs (quantitative trait locus) using a genotyping-by-sequencing strategy. A total of 54 QTLs were identified for blood components. One genome-wide significant QTL for alkaline phosphatase was identified within the intron-region of the OTOG gene (P = 1.31E-07). Moreover, 21 genome-wide significant SNPs for the level of serum cholinesterase were identified on six different scaffolds. In addition, for serum calcium, one genome-wide significant QTL was identified in the upstream region of gene RAB11B. These results provide new markers for functional studies in Pekin ducks, and several candidate genes were identified, which may provide additional insights into specific mechanisms for blood metabolism in ducks and their potential application for duck breeding programs.

7.
J Physiol Biochem ; 75(1): 11-18, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30706289

RESUMO

Lamin A/C is the major architectural protein of cell nucleus in charge of the nuclear mechanosensing. By integrating extracellular mechanical and biochemical signals, lamin A/C regulates multiple intracellular events including mesenchymal stem cell (MSC) fate determination. Herein, we review the recent findings about the effects and mechanisms of lamin A/C in governing MSC lineage commitment, with a special focus on osteogenesis and adipogenesis. Better understanding of MSC differentiation regulated by lamin A/C could provide insights into pathogenesis of age-related osteoporosis.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Lamina Tipo A/genética , Células-Tronco Mesenquimais/metabolismo , Osteoporose/genética , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/citologia , Diferenciação Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Regulação da Expressão Gênica , Humanos , Lamina Tipo A/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Osteoporose/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
BMC Genomics ; 20(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606130

RESUMO

BACKGROUND: Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks. RESULTS: We measured 18 carcass traits in 639 Pekin ducks and performed genotyping using genotyping-by-sequencing (GBS). Loci-based association analysis detected 37 significant loci for the 17 traits. Thirty-seven identified candidate genes were involved in many biological processes. One single nucleotide polymorphism (SNP) (Chr1_140105435 A > T) located in the intron of the ATPase phospholipid transporting 11A gene (ATP11A) attained genome-wide significance associated with five weight traits. Eight SNPs were significantly associated with three body size traits, including the candidate gene plexin domain containing 2 (PLXDC2) associated with breast width and tensin 3 (TNS3) associated with fossil bone length. Only two SNPs were significantly associated with foot weight and four SNPs were significantly associated with heart weight. In the gene-based analysis, three genes (LOC101791418, TUBGCP3 (encoding tubulin gamma complex-associated protein 3), and ATP11A) were associated with four traits (42-day body weight, eviscerated weight, half-eviscerated weight, and leg muscle weight percentage). However, no loci were significantly associated with leg muscle weight in this study. CONCLUSIONS: The novel results of this study improve our understanding of the genetic mechanisms regulating body growth in ducks and thus provide a genetic basis for breeding programs aimed at maximizing the economic potential of Pekin ducks.


Assuntos
Tamanho Corporal/genética , Patos/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Animais , Peso Corporal/genética , Cruzamento , Genótipo , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
Int J Urol ; 26(4): 451-456, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669176

RESUMO

OBJECTIVE: To present a DDD scoring system in assessing the complexity and outcomes of retroperitoneoscopic nephron-sparing surgery for kidney tumor. METHODS: We retrospectively evaluated 232 patients who underwent retroperitoneoscopic nephron-sparing surgery between January 2013 and September 2017 for a renal tumor. Both the DDD score and RENAL score were used to classify the tumors. The DDD score consisted of the maximal tumor diameter inside the kidney, the maximal tumor depth into the medulla or collecting system and the minimal distance from the tumor to the main renal vessels. RESULTS: The DDD scoring systems were significantly associated with warm ischemia time (P = 0.007) and estimated blood loss (P = 0.017). There was an insignificant positive correlation between the DDD score and the operative time (P = 0.051). Meanwhile, the RENAL score had a significant correlation with the decreasing value of the estimated glomerular filtration rate. Patients with high or moderate DDD scores had a 13.6-fold or 8.4-fold risk of overall complications than those with low DDD scores, respectively (all P < 0.05). As for RENAL score, patients with moderate scores had a 2.9-fold risk of overall complications compared with patients in the low scores group (P = 0.004). In the receiver operating characteristic curve analysis, the DDD score had the greatest area under the curve for overall complications (area under the curve 0.625, P = 0.009), which was more than the RENAL score (area under the curve 0.620, P = 0.013). CONCLUSIONS: The DDD score is an intuitive renal tumor scoring system that is more effective than the RENAL score in complexity assessment, and marginally better in prediction of the risk of overall complications of retroperitoneal laparoscopic nephron-sparing surgery.

10.
J Pineal Res ; 66(4): e12543, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30584671

RESUMO

Aflatoxin B1 (AFB1) is a major food and feed contaminant that threaten public health. Previous studies indicate that AFB1 exposure disrupted oocyte maturation. However, an effective and feasible method is unavailable for protecting oocytes against toxicity of AFB1. In the present study, using in vitro matured porcine oocytes and parthenogenetic embryos as model, we confirmed that AFB1 exposure during in vitro oocyte maturation (IVM) significantly impaired both nuclear and cytoplasmic maturation in a dose- and time-dependent manner. The different concentrations of melatonin were also tested for their protective effects on oocytes against the AFB1-induced toxicity. Our results showed that supplementation of a relative high concentration of melatonin (10-3 mol/L) during IVM efficiently reversed the impaired development rate and blastocyst quality, to the levels comparable to those of the control group. Further analysis indicated that melatonin application efficiently alleviated reactive oxygen species accumulation and initiation of apoptosis induced by AFB1 exposure. In addition, disrupted GSH/GPX system, as well as inhibited mitochondrial DNA (mtDNA) replication and mitochondrial biogenesis in AFB1-treated oocytes, can be notably reversed by melatonin application. Furthermore, cumulus cells may be important in mediating the toxicity of AFB1 to oocytes, and the metabolism of AFB1 in cumulus cells can be depressed by melatonin. To the best of our knowledge, this is the first report to confirm that melatonin application can efficiently protect oocytes from AFB1-induced toxicity. Our study provides a promising and practical strategy for alleviating or reversing AFB1-induced female reproductive toxicity in both clinical treatment and domestic reproductive management.


Assuntos
Aflatoxina B1/farmacologia , Técnicas de Maturação in Vitro de Oócitos , Melatonina/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , DNA Mitocondrial/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Marcação In Situ das Extremidades Cortadas , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suínos
11.
Ecotoxicol Environ Saf ; 167: 178-187, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336408

RESUMO

BACKGROUND: The increasing epidemic of fine particulate matter (PM2.5) is a serious threat to human health. It induces the occurrence of liver fibrosis, but its molecular mechanism is not yet clear. The molecular mechanisms of PM2.5 inducing liver fibrosis were investigated in this study. METHODS: The cell viability of LX-2 cells and primary hepatic stellate cells (HSCs) was detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro enzyme-linked immune sorbent assay (ELISA) kits were used to detect the concentrations of antioxidant enzymes and reactive oxygen species (ROS). The mitochondrial transmembrane potential (MTP) was determined by JC-1 dye. Knockdown of Parkin was carried out by Parkin-specific siRNA transfection. Relative mRNA and protein expressions were evaluated by qRT-PCR, Western blotting, and immunofluorescence analysis. RESULTS: PM2.5 activated LX-2 cells and primary HSCs, inducing the liver fibrosis along with down-regulation of the gelatinases MMP-2, and up-regulation of myofibroblast markers collagen type I and α-SMA. The levels of ROS and reactive nitrogen species (RNS), as well as the lipid peroxidation marker malondialdehyde (MDA) were significantly up-regulated in LX-2 cells and primary HSCs treated with PM2.5. Also, the enzymatic antioxidants levels were disturbed by PM2.5. Furthermore, PM2.5 decreased the MTP, releasing cytochrome c from the mitochondria to the cytosol. The dynamics of mitochondria were regulated by PM2.5 via facilitating mitochondrial fission. The excess ROS induced by PM2.5 triggered the mitophagy by activating PINK1/Parkin pathway, and inhibition of mitophagy induced by PM2.5 diminished the liver fibrosis. CONCLUSION: PM2.5 may induce mitophagy via activating PINK1/Parking signal pathway by increasing ROS, thereby activating HSCs and causing liver fibrosis.


Assuntos
Poluentes Atmosféricos/toxicidade , Cirrose Hepática/induzido quimicamente , Degradação Mitocondrial/efeitos dos fármacos , Material Particulado/toxicidade , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Nat Prod ; 81(9): 2010-2017, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30207477

RESUMO

The efficient synthesis and antifungal exploration of (+)-yahazunol and related natural products are described. Central to this strategy is the Barton decarboxylative coupling, comprising a one-pot radical decarboxylation and quinone addition cascade. The scalable synthesis of (+)-yahazunol was accomplished in five longest linear sequences (LLS) starting from commercially available and inexpensive (-)-sclareol. The divergent translational potential of (+)-yahazunol was demonstrated by the expedient preparation of (-)-zonarone, (-)-isozonarone, (-)-zonarol, (-)-isozonarol, (+)-chromazonarol, and (+)-yahazunone. This approach also enables the formal synthesis of puupehenol, puupehedione, and hongoquercin A. Antifungal evaluation was performed, and this represents the first biological profiles for (+)-yahazunone, (+)-8- O-acetylyahazunone, and (+)-8- O-acetylyahazunol. (+)-Chromazonarol and (+)-yahazunone are promising candidates against Sclerotinia scleotiorum, with EC50 values of 24.1 and 28.7 µM, respectively, demonstrating advantages over the original model (DM) and synthesized heterocyclic mimic (3a) of meroterpenoids. This will favor the establishment of a chemical repertoire in the management of different plant diseases.

13.
J Hum Genet ; 63(12): 1241-1250, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30209346

RESUMO

Diabetes-related hearing loss (DRHL) is a complication of diabetes mellitus that is drawing more attention currently. DNA methylation has a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM) and its complications. Therefore, we investigated the genome-wide DNA methylation of peripheral blood of T2DM patients with/without hearing loss in order to explore the susceptibility loci of DRHL. Between DRHL group and control group, 113 gene sites were identified to be differentially methylated regions (DMRs). Among 38 DMRs with whole samples, the classification accuracy is up to 90%. With alignment to T2DM susceptibility genes and deafness genes published, KCNJ11 was found to be the only overlapped gene. The DNA methylation level of KCNJ11 was associated with stroke (t = 2.595, p < 0.05), but not with diabetic nephropathy and diabetic retinopathy. The detective rate of distortion product otoacoustic emissions (DPOAE) from low to high frequencies (0.7-6 kHz) on the right ear was significantly correlated with the methylation level of KCNJ11. The auditory brainstem response (ABR) threshold on the right ear was also correlated (r = 0.678, p < 0.05). This DNA methylation profile indicates the susceptibility loci of DRHL. The potassium metabolism may have a critical role in the hearing loss caused by hyperglycemia.

14.
Sci Rep ; 8(1): 12996, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158583

RESUMO

Craniofacial defect is a critical problem in dental clinic, which has a tremendous impact on patients' quality of life. Mesenchymal stem cell-based therapy has emerged as a promising approach for tissue defect repair. However, reduced survival after mesenchymal stem cells (MSCs) transplantation remains as a major problem in this area, which hampers the outcome of regeneration. Recently, the mechanism to mobilize endogenous MSCs for tissue regeneration has received increasing attentions, as it does not require exogenous cell transplantation. The primary goal of this study was to confirm the role of intravenous substance P in mobilizing endogenous CD45-CD11b-CD29+ MSCs in critical-sized bone defect animals and to investigate the effects of substance P on calvarial bone repair. Flow cytometry analyses revealed that intravenous substance P promoted the mobilization of endogenous CD45-CD11b-CD29+ MSCs after bone defect. In addition, Micro-CT showed that intravenous substance P improved the outcomes of calvarial bone repair. Furthermore, we discovered that systemic injection of substance P attenuated inflammation and enhanced the survival of the local-transplanted GFP+ MSCs. Our findings suggested that substance P together with its mobilized CD45-CD11b-CD29+ MSCs helped improve calvarial defect repair through regulating inflammatory conditions and promoting the survival of local-transplanted cells.

15.
IEEE Trans Cybern ; 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29994417

RESUMO

Critical node problems (CNPs) involve finding a set of critical nodes from a graph whose removal results in optimizing a predefined measure over the residual graph. As useful models for a variety of practical applications, these problems are computationally challenging. In this paper, we study the classic CNP and introduce an effective memetic algorithm for solving CNP. The proposed algorithm combines a double backbone-based crossover operator (to generate promising offspring solutions), a component-based neighborhood search procedure (to find high-quality local optima), and a rank-based pool updating strategy (to guarantee a healthy population). Extensive evaluations on 42 synthetic and real-world benchmark instances show that the proposed algorithm discovers 24 new upper bounds and matches 15 previous best-known bounds. We also demonstrate the relevance of our algorithm for effectively solving a variant of the classic CNP, called the cardinality-constrained CNP. Finally, we investigate the usefulness of each key algorithmic component.

16.
Calcif Tissue Int ; 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29916126

RESUMO

Collagen cross-linking, as a form of collagen post-translational modification, plays a crucial role in maintaining bone mechanical properties as well as in regulating cell biological functions. Shifts in cross-links profile are found apparently correlated to kinds of skeletal pathology and diseases, whereas little is known about the relationship between collagen cross-links and osteogenesis. Here, we hypothesized that the inhibition of collagen cross-links could impair skeletal microstructure and inhibit osteogenesis. A mouse model of collagen cross-linking defects has been established using subcutaneous injection of 350 mg/kg ß-aminopropionitrile (BAPN) daily for 4 weeks, and same dose of phosphate buffered saline (PBS) served as control group. The analysis of bone microstructural parameters revealed a significant decrease of bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), and increase of bone surface ratio (BS/BV), structure model index (SMI) as well as trabecular separation (Tb.Sp) in the experimental group (p < 0.05), whereas there was no difference observed in bone mineral density (BMD). Histological staining displayed that the BAPN treatment caused thinner trabeculae and decrease of collagen content in proximal tibiae. The analysis of osteogenesis PCR (Polymerase Chain Reaction) array reflected that BAPN remarkably influenced the expression of Alpl, Bglap, Bgn, Bmp5, Col10a1, Col1a1, Col1a2, Col5a1, Itga2b, and Serpinh1. The results of immunohistochemistry displayed a significant reduction in the mean optical densities of OCN and COL1 at the presence of BAPN. The overall results of this study suggested that BAPN alters bone microstructure and hinders the expression of osteogenic genes without affecting mineralization processes, indicating the influences of collagen cross-links on osteogenesis may be a potential pathological mechanism in skeletal diseases.

17.
Horm Behav ; 103: 111-120, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29940158

RESUMO

Since NUCB2 was discovered, the information about NUCB2/nesfatin-1 in appetite regulation in both mammals and teleost has been still limited. The present study aims to determine the effects of nesfatin-1 on food intake and to explore the appetite mechanism in Siberian sturgeon. In this study, nucb2 cDNA sequence of 1571 bp was obtained, and the mRNA expression of nucb2 was abundant in brain and liver. Levels of nucb2 were appreciably increased in brain after feeding 1 and 3 h, while significantly decreased within fasting 15 days. Except for fasting 1 day, the expression pattern of nucb2 in the liver was similar to the brain. Acute intraperitoneal (i.p.) injection of nesfatin-1 inhibited the food intake during 0-1 h in a dose-dependent manner and 50 or 100 ng/g BW nesfatin-1 significantly decreased the cumulative food intake during 3 h. The daily food intake and cumulative food intake were remarkably reduced post chronic (7 days) i.p. injection. Moreover, chronic i.p. injection of nesfatin-1 affected the expression of appetite factors including cart, apelin and pyy in the brain, stomach and liver with the consistent pattern of change, while the levels of cck, ucn3 and nucb2 in these have different patterns. This study demonstrates that nesfatin-1 acts as a satiety factor in reducing the short-term and long-term food intake of Siberian sturgeon. Therefore, the data suggesting nesfatin-1 inhibits the appetite through different signal pathways in the central and peripheral endocrine systems of Siberian sturgeon.

18.
J Fish Biol ; 93(4): 609-615, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29956323

RESUMO

Apela identified from zebrafish Danio rerio for the first time in 2013 is a novel endogenous peptide ligand for the apelin receptor. To study the role of apela in regulating fish feeding, the complementary (c) DNA sequence of apela of Siberian sturgeon Acipenser baerii was cloned for the first time. The apela cDNA fragment of 836 bp was obtained by cloning. The open reading frame (ORF) of apela was 165 bp encoding a 54 amino acid, including 22 amino acids signal peptide and two proteolytic sites. Phylogenetic tree analysis showed that A. baerii apela was clustered with mammalian and amphibian sequences. A. baerii apela messeger (m)RNA was widely distributed in 11 tissues related to feeding, with high expressions in brain, oesophagus and stomach, especially in the brain. The level of apela mRNA in brain increased significantly after feeding. On the first day of fasting, apela expression in brain was significantly lower than that of the fed group, but after fasting for 3-15 days, the expression of apela in A. baerii brain was significantly higher than that in the fed group. After refeeding apela mRNA expression was obviously reduced. These results suggest that apela plays a bidirectional role in feeding regulation of A. baerii, which may serve as a short-term satiation factor and a long-term hunger factor.

19.
Poult Sci ; 97(7): 2365-2371, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618042

RESUMO

The purpose of this study was to evaluate the correlation between live body measurements and several fat traits in Pekin ducks, and ultimately to formulate multiple regression equations for the in vivo estimation of the carcass fatness of Pekin ducks. Several traits were measured in a total of 208 Pekin ducks aged 6 wk (107 males and 101 females). All ducks were weighed and measured for a set of body measurements including live body weight, body slope length, breast muscle thickness, skin fat thickness, chest width, keel length, and neck length. The breast muscle thickness and skin fat thickness was measured using B-scan sonography. Carcass information, including eviscerated weight, subcutaneous fat with skin weight, and abdominal fat weight, was collected after slaughter. Our results revealed that sex effects on most traits were significant (P < 0.05), and that the weight of subcutaneous fat with skin was significantly correlated with live body weight (r = 0.57 to 0.71, P < 0.01). Four additional traits of males were closely correlated with the weight of subcutaneous fat with skin, namely breast muscle thickness (r = 0.20, P < 0.01), skin fat thickness (r = 0.43, P < 0.01), chest width (r = 0.24, P < 0.01), and neck length (r = 0.20, P < 0.05). The abdominal fat weight, percentage of fat, and percentage of subcutaneous fat with skin of ducks were significantly correlated with live body weight (r = 0.38 to 0.43, P < 0.01), and skin fat thickness (r = 0.38 to 0.49, P < 0.01). These traits provided the basis for constructing regression equations to predict weight (or percentage) of subcutaneous fat and abdominal fat with high values of coefficients of multiple correlation (R) between the dependent variable and the independent variables. Two equations were verified to be applicable in other duck groups, with high accuracy, as more than 80% of estimated values were within the margin of error (<10%), compared with the actual values.


Assuntos
Adiposidade/fisiologia , Pesos e Medidas Corporais/veterinária , Patos/fisiologia , Animais , Feminino , Masculino , Análise de Regressão
20.
Exp Cell Res ; 368(2): 167-173, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702102

RESUMO

ER-localized proteins have been reported function in endoplasmic reticulum, unfolded protein degradation and destruction of misfolded proteins by the ER-associated protein degradation (ERAD) system, but their function in the chemotaxis of macrophage cells remained un-addressed. Here, we showed that ER protein with ubiquitin like domain 1(Herpud1) was upregulated in IL-4-treated M2 macrophage cells and its expression pattern was similar with macrophage polarization markers, such as Arg1, Mrc1 and Fizz1. Inhibition of Herpud1 by using specific target shRNA decreased these marker's expression at mRNA and protein level in IL-4-treated or -untreated M2 macrophage cells. IL-4 treatment promoted M2 macrophage cell migration and polarization, but this promotion was weakened by Herpud1 depletion and we got similar results by inhibition of ER stress response with chemical molecule 4-phenylbutyric acid (4-PBA) in IL-4-treated or untreated-M2 macrophage cells with Herpud1 overexpression. These results indicated that depending on ER-associated protein degradation (ERAD) to help unfolded protein degradation or destruction is not the only function of Herpud1 and acting as a mediator of IL-4 induced macrophage activation and polarization maybe another unrevealed function, elucidating the role of Herpud1-associated M2 macrophage cell polarization and activation are helpful for exploration the function of macrophage cells in immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA