Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(43): 37972-37980, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058877

RESUMO

The Billups-Birch Reduction chemistry has been shown to functionalize single-walled carbon nanotubes (SWCNTs) without damaging the sidewalls, but has challenges in scalability. Currently published work uses a large mole ratio of Li to carbon atoms in the SWCNT (Li:C) to account for lithium amide formation, however this increases the cost and hazard of the reaction. We report here the systematic understanding of the effect of various parameters on the extent of functionalization using resonant Raman spectroscopy. Addition of 1-iodododecane yielded alkyl-functionalized SWCNTs, which were isolated by solvent extraction and evaporation, and purified by a hydrocarbon wash. The presence of SWCNT growth catalyst residue (Fe) was shown to have a strong adverse effect on SWCNT functionalization. Chlorination-based SWCNT purification reduced the amount of residual Fe, and achieve a maximum ID/IG ratio using a Li:C ratio of 6:1 in a reaction time of 30 min. This result is consistent with published literature requiring 20-fold mole equivalents of Li per mole SWCNT with a reaction time of over 12 h. This new understanding of the factors influencing the functionalization chemistry will help cut down material and process costs, and also increase the selectivity of the reaction toward the desired product.

2.
ACS Nano ; 11(1): 384-394, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27989107

RESUMO

Mo2C nanocrystals (NCs) anchored on vertically aligned graphene nanoribbons (VA-GNR) as hybrid nanoelectrocatalysts (Mo2C-GNR) are synthesized through the direct carbonization of metallic Mo with atomic H treatment. The growth mechanism of Mo2C NCs with atomic H treatment is discussed. The Mo2C-GNR hybrid exhibits highly active and durable electrocatalytic performance for the hydrogen-evolution reaction (HER) and oxygen-reduction reaction (ORR). For HER, in an acidic solution the Mo2C-GNR has an onset potential of 39 mV and a Tafel slope of 65 mV dec-1, and in a basic solution Mo2C-GNR has an onset potential of 53 mV, and Tafel slope of 54 mV dec-1. It is stable in both acidic and basic media. Mo2C-GNR is a high-activity ORR catalyst with a high peak current density of 2.01 mA cm-2, an onset potential of 0.93 V that is more positive vs reversible hydrogen electrode (RHE), a high electron transfer number n (∼3.90), and long-term stability.

3.
Nat Nanotechnol ; 11(7): 633-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27043199

RESUMO

The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm(2)) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 10(6) nanotubes in a cross-sectional area of 1 µm(2). The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.

4.
ACS Appl Mater Interfaces ; 8(11): 7356-62, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26905859

RESUMO

The design and synthesis of hybrid structures between graphene and carbon nanotubes is an intriguing topic in the field of carbon nanomaterials. Here the synthesis of vertically aligned CNT carpets underneath graphene and from both sides of graphene is described with continuous ordering over a large area. Scanning electron microscopy and Raman spectroscopic characterizations show that CNT carpets grow underneath graphene through a base-growth mechanism, and grow on top of graphene through a tip-growth mechanism. Good electrical contact is observed from the top CNT carpets, through the graphene layer, to the bottom CNT carpets. This sandwich-like CNT/graphene/CNT hybrid structure could provide an approach to design and fabricate multilayered graphene/CNTs materials, as well as potential applications in the fields of nanomanufacturing and energy storage.

5.
Nano Lett ; 16(2): 1287-92, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789079

RESUMO

Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process.

6.
ACS Nano ; 9(12): 11618-27, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26512738

RESUMO

Carbon nanotubes (CNTs) have emerged as promising materials for visible, infrared, and terahertz photodetectors. Further development of these photodetectors requires a fundamental understanding of the mechanisms that govern their behavior as well as the establishment of figures of merit for technology applications. Recently, a number of CNT detectors have been shown to operate based on the photothermoelectric effect. Here we present a figure of merit for these detectors, which includes the properties of the material and the device. In addition, we use a suite of experimental characterization methods for the thorough analysis of the electrical, thermoelectric, electrothermal, and photothermal properties of the CNT thin-film devices. Our measurements determine the quantities that enter the figure of merit and allow us to establish a path toward future performance improvements.

7.
ACS Nano ; 9(6): 6324-32, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26027688

RESUMO

Covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) is an important tool for tailoring their properties for research purposes and applications. In this study, SWCNT samples were first functionalized by reductive alkylation using metallic lithium and 1-iodododecane in liquid ammonia. Samples of the alkyl-functionalized SWCNTs were then pyrolyzed under an inert atmosphere at selected temperatures between 100 and 500 °C to remove the addends. The extent of defunctionalization was assessed using a combination of thermogravimetric analysis, Raman measurements of the D, G, and radial breathing bands, absorption spectroscopy of the first- and second-order van Hove peaks, and near-IR fluorescence spectroscopy of (n,m)-specific emission bands. These measurements all indicate a substantial dependence of defunctionalization rate on nanotube diameter, with larger diameter nanotubes showing more facile loss of addends. The effective activation energy for defunctionalization is estimated to be a factor of ∼1.44 greater for 0.76 nm diameter nanotubes as compared to those with 1.24 nm diameter. The experimental findings also reveal the quantitative variation with functionalization density of the Raman D/G intensity ratio and the relative near-IR fluorescence intensity. Pyrolyzed samples show spectroscopic properties that are equivalent to those of SWCNTs prior to functionalization. The strong structure dependence of the defunctionalization rate suggests an approach for scalable diameter sorting of mixed SWCNT samples.

8.
Nano Lett ; 15(5): 3267-72, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879274

RESUMO

We have generated coherent pulses of terahertz radiation from macroscopic arrays of aligned single-wall carbon nanotubes (SWCNTs) excited by femtosecond optical pulses without externally applied bias. The generated terahertz radiation is polarized along the SWCNT alignment direction. We propose that top-bottom asymmetry in the SWCNT arrays produces a built-in electric field in semiconducting SWCNTs, which enables generation of polarized terahertz radiation by a transient photocurrent surge directed along the nanotube axis.

9.
ACS Nano ; 8(7): 7279-87, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24930958

RESUMO

Three-dimensional heterogeneously nanostructured thin-film electrodes were fabricated by using Ta2O5 nanotubes as a framework to support carbon-onion-coated Fe2O3 nanoparticles along the surface of the nanotubes. Carbon onion layers function as microelectrodes to separate the two different metal oxides and form a nanoscale 3-D sandwich structure. In this way, space-charge layers were formed at the phase boundaries, and it provides additional energy storage by charge separation. These 3-D nanostructured thin films deliver both excellent Li-ion battery properties (stabilized at 800 mAh cm(­3)) and supercapacitor (up to 18.2 mF cm(­2)) performance owing to the synergistic effects of the heterogeneous structure. Thus, Li-ion batteries and supercapacitors are successfully assembled into the same electrode, which is promising for next generation hybrid energy storage and delivery devices.

10.
Nano Lett ; 14(7): 3953-8, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24875576

RESUMO

Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∼2.5 V/W and polarization ratios as high as ∼5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance.


Assuntos
Nanotubos de Carbono/química , Espectroscopia Terahertz/instrumentação , Desenho de Equipamento , Nanotubos de Carbono/ultraestrutura , Temperatura , Radiação Terahertz
11.
ACS Nano ; 8(5): 5061-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24694285

RESUMO

As the cylindrical sp(2)-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π-π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry.


Assuntos
Grafite/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Compostos de Boro/química , Carbono/química , Cristalização , Condutividade Elétrica , Eletrodos , Teste de Materiais , Metais/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Níquel/química , Tamanho da Partícula , Polímeros/química , Ligação Proteica , Espectrofotometria , Análise Espectral Raman , Estresse Mecânico , Propriedades de Superfície , Água
12.
J Mater Chem B ; 2(29): 4740-4747, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262286

RESUMO

High quality single-walled carbon nanotubes (SWNTs) were obtained following a new purification procedure, based on using Cl2 gas at high temperature. Cl2-treated SWNTs were fluorinated and modified with branched polyethyleneimine (PEI) to afford covalently functionalised PEI-SWNTs, which were then tested for cytotoxicity both in vitro (HPNE and BxPC3 pancreatic cell lines) and in vivo (BxPC3 xenografts from nude mice) to establish that functionalization with lower molecular weight PEI (600 and 1800 Da) achieved higher cell viability in MTT assay. A shortened version of the nanotubes, PEI(1800)-cut-SWNT (1800 Da branched PEI), was also prepared and tested for cellular internalization in the BxPC3 adenocarcinoma cell line. Laser confocal imaging of the cells after incubation in the presence of RhoB-PEI(1800)-cut-SWNT (covalently labelled with rhodamine B) indicates that the PEI(1800)-cut-SWNTs can reach both the cytoplasm and nucleus of pancreatic cancer cells.

13.
Nanoscale ; 5(20): 9848-59, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23974219

RESUMO

Vertical arrays of single walled carbon nanotubes (VA-SWNTs) were grown using bi-metallic nanoparticle pro-catalysts. Iron oxide particles were doped with varying quantities of first row transition metals (Mn, Co, Ni, and Cu) for a comparative study of the growth of nanotubes. VA-CNT samples were verified using scanning electron microscopy, and characterized using resonance Raman spectroscopy. The length of the VA-CNTs is used as a measure of catalyst activity: the presence of dopants results in a change in the CNT length and length distribution. Cross correlation of the Raman spectra reveal variations in the distribution of radial breathing mode peaks according to the pro-catalyst composition. The formation of various chirality nanotubes is constant between repetitive runs with a particular catalyst, but may be controlled by the identity and concentration of the metal dopants within the iron catalyst. These results demonstrate that the composition of the catalyst is a major driving force toward type selective growth of nanotubes.

14.
ACS Nano ; 7(8): 7271-7, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23808567

RESUMO

Light polarization is used in the animal kingdom for communication, navigation, and enhanced scene interpretation and also plays an important role in astronomy, remote sensing, and military applications. To date, there have been few photodetector materials demonstrated to have direct polarization sensitivity, as is usually the case in nature. Here, we report the realization of a carbon-based broadband photodetector, where the polarimetry is intrinsic to the active photodetector material. The detector is based on p-n junctions formed between two macroscopic films of single-wall carbon nanotubes. A responsivity up to ~1 V/W was observed in these devices, with a broadband spectral response spanning the visible to the mid-infrared. This responsivity is about 35 times larger than previous devices without p-n junctions. A combination of experiment and theory is used to demonstrate the photothermoelectric origin of the responsivity and to discuss the performance attributes of such devices.

15.
ACS Nano ; 7(6): 5151-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23672653

RESUMO

Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

16.
Sci Rep ; 3: 1335, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23443054

RESUMO

Increasing performance demands on photodetectors and solar cells require the development of entirely new materials and technological approaches. We report on the fabrication and optoelectronic characterization of a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared under global illumination, with a response time less than 32 µs. Scanning photocurrent microscopy indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and theoretical results open a new path for the realization of optoelectronic devices based on three-dimensionally organized nanotubes.

17.
Nanotechnology ; 24(10): 105202, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23416509

RESUMO

Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.

18.
Nanoscale ; 5(4): 1411-39, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23340668

RESUMO

Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electron-hole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of Tomonaga-Luttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the near-infrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G(-)) feature is a result of resonance with non-armchair "metallic" nanotubes. These findings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Refratometria/métodos , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
19.
Nano Lett ; 13(1): 72-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23237453

RESUMO

In this research, 3-dimensional (3D) graphene/carbon nanotube carpets (G/CNTCs)-based microsupercapacitors (G/CNTCs-MCs) were fabricated in situ on nickel electrodes. The G/CNTCs-MCs show impedance phase angle of -81.5° at a frequency of 120 Hz, comparable to commercial aluminum electrolytic capacitors (AECs) for alternating current (ac) line filtering applications. In addition, G/CNTCs-MCs deliver a high volumetric energy density of 2.42 mWh/cm(3) in the ionic liquid, more than 2 orders of magnitude higher than that of AECs. The ultrahigh rate capability of 400 V/s enables the microdevices to demonstrate a maximum power density of 115 W/cm(3) in aqueous electrolyte. The high-performance electrochemical properties of G/CNTCs-MCs can provide more compact ac filtering units and discrete power sources in future electronic devices. These elevated electrical features are likely enabled by the seamless nanotube/graphene junctions at the interface of the differing carbon allotropic forms.

20.
Nat Commun ; 3: 1225, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187625

RESUMO

Graphene and single-walled carbon nanotubes are carbon materials that exhibit excellent electrical conductivities and large specific surface areas. Theoretical work suggested that a covalently bonded graphene/single-walled carbon nanotube hybrid material would extend those properties to three dimensions, and be useful in energy storage and nanoelectronic technologies. Here we disclose a method to bond graphene and single-walled carbon nanotubes seamlessly during the growth stage. The hybrid material exhibits a surface area >2,000 m(2) g(-1) with ohmic contact from the vertically aligned single-walled carbon nanotubes to the graphene. Using aberration-corrected scanning transmission electron microscopy, we observed the covalent transformation of sp(2) carbon between the planar graphene and the single-walled carbon nanotubes at the atomic resolution level. These findings provide a new benchmark for understanding the three-dimensional graphene/single-walled carbon nanotube-conjoined materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...