Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Hypertension ; : HYPERTENSIONAHA12016471, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33611940

RESUMO

Although genetic risk scores have been used to predict hypertension, their utility in the clinical setting remains uncertain. Our study comprised N=218 792 FinnGen participants (mean age 58 years, 56% women) and N=22 624 well-phenotyped FINRISK participants (mean age 50 years, 53% women). We used public genome-wide association data to compute polygenic risk scores (PRSs) for systolic and diastolic blood pressure (BP). Using time-to-event analysis, we then assessed (1) the association of BP PRSs with hypertension and cardiovascular disease (CVD) in FinnGen and (2) the improvement in model discrimination when combining BP PRSs with the validated 4- and 10-year clinical risk scores for hypertension and CVD in FINRISK. In FinnGen, compared with having a 20 to 80 percentile range PRS, a PRS in the highest 2.5% conferred 2.3-fold (95% CI, 2.2-2.4) risk of hypertension and 10.6 years (95% CI, 9.9-11.4) earlier hypertension onset. In subgroup analyses, this risk was only 1.6-fold (95% CI, 1.5-1.7) for late-onset hypertension (age ≥55 years) but 2.8-fold (95% CI, 2.6-2.9) for early-onset hypertension (age <55 years). Elevated systolic BP PRS also conferred 1.3-fold (95% CI, 1.2-1.4) risk of CVD and 2.3 years (95% CI, 1.6-3.1) earlier onset. In FINRISK, systolic and diastolic BP PRSs improved clinical risk prediction of hypertension (but not CVD), increasing the C statistics by 0.7% (95% CI, 0.3-1.1). We demonstrate that genetic information improves hypertension risk prediction. BP PRSs together with traditional risk factors could improve prediction of hypertension and particularly early-onset hypertension, which confers substantial CVD risk.

3.
Nat Genet ; 53(2): 185-194, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462484

RESUMO

Clinical laboratory tests are a critical component of the continuum of care. We evaluate the genetic basis of 35 blood and urine laboratory measurements in the UK Biobank (n = 363,228 individuals). We identify 1,857 loci associated with at least one trait, containing 3,374 fine-mapped associations and additional sets of large-effect (>0.1 s.d.) protein-altering, human leukocyte antigen (HLA) and copy number variant (CNV) associations. Through Mendelian randomization (MR) analysis, we discover 51 causal relationships, including previously known agonistic effects of urate on gout and cystatin C on stroke. Finally, we develop polygenic risk scores (PRSs) for each biomarker and build 'multi-PRS' models for diseases using 35 PRSs simultaneously, which improved chronic kidney disease, type 2 diabetes, gout and alcoholic cirrhosis genetic risk stratification in an independent dataset (FinnGen; n = 135,500) relative to single-disease PRSs. Together, our results delineate the genetic basis of biomarkers and their causal influences on diseases and improve genetic risk stratification for common diseases.

4.
Obesity (Silver Spring) ; 29(2): 428-437, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33491305

RESUMO

OBJECTIVE: This study aimed to investigate the role of cytokines as intermediates in the pathway from increased adiposity to disease. METHODS: BMI and circulating levels of up to 41 cytokines were measured in individuals from three Finnish cohort studies (n = 8,293). Mendelian randomization (MR) was used to assess the impact of BMI on circulating cytokines and the impact of BMI-driven cytokines on risk of obesity-related diseases. RESULTS: Observationally, BMI was associated with 19 cytokines. For every SD increase in BMI, causal effect estimates were strongest for hepatocyte growth factor, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and were as ratios of geometric means 1.13 (95% CI: 1.08-1.19), 1.08 (95% CI: 1.04-1.14), and 1.13 (95% CI: 1.04-1.21), respectively. TRAIL was associated with a small increase in the odds of coronary artery disease (odds ratio: 1.03; 95% CI: 1.00-1.06). There was inconsistent evidence for a protective role of MCP-1 against inflammatory bowel diseases. CONCLUSIONS: Observational and MR estimates of the effect of BMI on cytokine levels were generally concordant. There was little evidence for an effect of raised levels of BMI-driven cytokines on disease. These findings illustrate the challenges of MR when applied in the context of molecular mediation.

5.
Europace ; 2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33458771

RESUMO

AIMS: Classical cardiovascular risk factors (CVRFs), biomarkers, and common genetic variation have been suggested for risk assessment of atrial fibrillation (AF). To evaluate their clinical potential, we analysed their individual and combined ability of AF prediction. METHODS AND RESULTS: In N = 6945 individuals of the FINRISK 1997 cohort, we assessed the predictive value of CVRF, N-terminal pro B-type natriuretic peptide (NT-proBNP), and 145 recently identified single-nucleotide polymorphisms (SNPs) combined in a developed polygenic risk score (PRS) for incident AF. Over a median follow-up of 17.8 years, n = 551 participants (7.9%) developed AF. In multivariable-adjusted Cox proportional hazard models, NT-proBNP [hazard ratio (HR) of log transformed values 4.77; 95% confidence interval (CI) 3.66-6.22; P < 0.001] and the PRS (HR 2.18; 95% CI 1.88-2.53; P < 0.001) were significantly related to incident AF. The discriminatory ability improved asymptotically with increasing numbers of SNPs. Compared with a clinical model, AF risk prediction was significantly improved by addition of NT-proBNP and the PRS. The C-statistic for the combination of CVRF, NT-proBNP, and the PRS reached 0.83 compared with 0.79 for CVRF only (P < 0.001). A replication in the Dutch Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort revealed similar results. Comparing the highest vs. lowest quartile, NT-proBNP and the PRS both showed a more than three-fold increased AF risk. Age remained the strongest risk factor with a 16.7-fold increased risk of AF in the highest quartile. CONCLUSION: The PRS and the established biomarker NT-proBNP showed comparable predictive ability. Both provided incremental predictive value over standard clinical variables. Further improvements for the PRS are likely with the discovery of additional SNPs.

6.
Neurology ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268560

RESUMO

OBJECTIVE: To conduct a comprehensive analysis of circulating metabolites and incident stroke in large prospective population-based settings. METHODS: We investigated the association of metabolites with risk of stroke in seven prospective cohort studies including 1,791 incident stroke events among 38,797 participants in whom circulating metabolites were measured by Nuclear Magnetic Resonance (1H-NMR) technology. The relationship between metabolites and stroke was assessed using Cox proportional hazards regression models. The analyses were performed considering all incident stroke events and ischemic and hemorrhagic events separately. RESULTS: The analyses revealed ten significant metabolite associations. Amino acid histidine (hazard ratio (HR) per standard deviation (SD) = 0.90, 95% confidence interval (CI): 0.85, 0.94; P = 4.45×10-5), glycolysis-related metabolite pyruvate (HR per SD = 1.09, 95% CI: 1.04, 1.14; P = 7.45×10-4), acute phase reaction marker glycoprotein acetyls (HR per SD = 1.09, 95% CI: 1.03, 1.15; P = 1.27×10-3), cholesterol in high-density lipoprotein (HDL) 2 and several other lipoprotein particles were associated with risk of stroke. When focusing on incident ischemic stroke, a significant association was observed with phenylalanine (HR per SD = 1.12, 95% CI: 1.05, 1.19; P = 4.13×10-4) and total and free cholesterol in large HDL particles. CONCLUSIONS: We found association of amino acids, glycolysis-related metabolites, acute phase reaction markers, and several lipoprotein subfractions with the risk of stroke. These findings support the potential of metabolomics to provide new insights into the metabolic changes preceding stroke.

7.
Nat Genet ; 52(12): 1314-1332, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230300

RESUMO

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.

8.
Eur Respir J ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33243845

RESUMO

There is currently limited understanding of the genetic aetiology of obstructive sleep apnoea (OSA). We aimed at identifying genetic loci associated with OSA risk and to test if OSA and its comorbidities share a common genetic background.We conducted the first large-scale genome-wide association study of OSA using FinnGen Study (217 955 individuals) with 16 761 OSA patients identified using nationwide health registries.We estimated 8.3% [0.06-0.11] heritability and identified five loci associated with OSA (p<5.0×10-8): rs4837016 near GTPase activating protein and VPS9 domains 1 (GAPVD1), rs10928560 near C-X-C motif chemokine receptor 4 (CXCR4), rs185932673 near Calcium/calmodulin-dependent protein kinase ID (CAMK1D) and rs9937053 near Fat mass and obesity-associated protein (FTO) - a variant previously associated with body mass index (BMI). In a BMI-adjusted analysis, an association was observed for rs10507084 near Rhabdomyosarcoma 2 associated transcript (RMST)/NEDD1 gamma-tubulin ring complex targeting factor (NEDD1). We found high genetic correlations between OSA and BMI (rg=0.72 [0.62-0.83]) and with comorbidities including hypertension, type 2 diabetes (T2D), coronary heart disease (CHD), stroke, depression, hypothyroidism, asthma and inflammatory rheumatic diseases (IRD) (rg>0.30). Polygenic risk score (PRS) for BMI showed 1.98-fold increased OSA risk between the highest and the lowest quintile and Mendelian randomisation supported a causal relationship between BMI and OSA.Our findings support the causal link between obesity and OSA and joint genetic basis between OSA and comorbidities.

9.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.

10.
J Am Heart Assoc ; 9(19): e017598, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32975162

RESUMO

Background Epidemiological and animal studies have associated systemic inflammation with blood pressure (BP). However, the mechanistic factors linking inflammation and BP remain unknown. Fatty acid-derived eicosanoids serve as mediators of inflammation and have been suggested to regulate renal vascular tone, peripheral resistance, renin-angiotensin system, and endothelial function. We hypothesize that specific proinflammatory and anti-inflammatory eicosanoids are linked with BP. Methods and Results We studied a population sample of 8099 FINRISK 2002 participants randomly drawn from the Finnish population register (53% women; mean age, 48±13 years) and, for external validation, a sample of 2859 FHS (Framingham Heart Study) Offspring study participants (55% women; mean age, 66±9 years). Using nontargeted liquid chromatography-mass spectrometry, we profiled 545 distinct high-quality eicosanoids and related oxylipin mediators in plasma. Adjusting for conventional hypertension risk factors, we observed 187 (34%) metabolites that were significantly associated with systolic BP (P

11.
Alzheimers Dement ; 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886434

RESUMO

INTRODUCTION: Conventional risk factors targeted by prevention (e.g., low education, smoking, and obesity) are associated with a 1.2- to 2-fold increased risk of dementia. It is unclear whether having a physical disease is an equally important risk factor for dementia. METHODS: In this exploratory multicohort study of 283,414 community-dwelling participants, we examined 22 common hospital-treated physical diseases as risk factors for dementia. RESULTS: During a median follow-up of 19 years, a total of 3416 participants developed dementia. Those who had erysipelas (hazard ratio = 1.82; 95% confidence interval = 1.53 to 2.17), hypothyroidism (1.94; 1.59 to 2.38), myocardial infarction (1.41; 1.20 to 1.64), ischemic heart disease (1.32; 1.18 to 1.49), cerebral infarction (2.44; 2.14 to 2.77), duodenal ulcers (1.88; 1.42 to 2.49), gastritis and duodenitis (1.82; 1.46 to 2.27), or osteoporosis (2.38; 1.75 to 3.23) were at a significantly increased risk of dementia. These associations were not explained by conventional risk factors or reverse causation. DISCUSSION: In addition to conventional risk factors, several physical diseases may increase the long-term risk of dementia.

12.
Sci Rep ; 10(1): 15760, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978407

RESUMO

Health differences among the elderly and the role of medical treatments are topical issues in aging societies. We demonstrate the use of modern statistical learning methods to develop a data-driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging individuals. The resulting score was validated with 33,616 individuals from two fully independent datasets and it is strongly associated with all-cause mortality (HR 1.18 per point increase in score; 95% CI 1.14-1.22; p = 2.25e-16). When combined with Charlson comorbidity index, individuals with elevated medication score and comorbidity index had over six times higher risk (HR 6.30; 95% CI 3.84-10.3; AUC = 0.802) compared to individuals with a protective score profile. Alone, the medication score performs similarly to the Charlson comorbidity index and is associated with polygenic risk for coronary heart disease and type 2 diabetes.

13.
Europace ; 22(10): 1463-1469, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830215

RESUMO

AIMS: Natriuretic peptides are extensively studied biomarkers for atrial fibrillation (AF) and heart failure (HF). Their role in the pathogenesis of both diseases is not entirely understood and previous studies several single-nucleotide polymorphisms (SNPs) at the NPPA-NPPB locus associated with natriuretic peptides have been identified. We investigated the causal relationship between natriuretic peptides and AF as well as HF using a Mendelian randomization approach. METHODS AND RESULTS: N-terminal pro B-type natriuretic peptide (NT-proBNP) (N = 6669), B-type natriuretic peptide (BNP) (N = 6674), and mid-regional pro atrial natriuretic peptide (MR-proANP) (N = 6813) were measured in the FINRISK 1997 cohort. N = 30 common SNPs related to NT-proBNP, BNP, and MR-proANP were selected from studies. We performed six Mendelian randomizations for all three natriuretic peptide biomarkers and for both outcomes, AF and HF, separately. Polygenic risk scores (PRSs) based on multiple SNPs were used as genetic instrumental variable in Mendelian randomizations. Polygenic risk scores were significantly associated with the three natriuretic peptides. Polygenic risk scores were not significantly associated with incident AF nor HF. Most cardiovascular risk factors showed significant confounding percentages, but no association with PRS. A causal relation except for small causal betas is unlikely. CONCLUSION: In our Mendelian randomization approach, we confirmed an association between common genetic variation at the NPPA-NPPB locus and natriuretic peptides. A strong causal relationship between natriuretic peptides and incidence of AF as well as HF at the community-level was ruled out. Therapeutic approaches targeting natriuretic peptides will therefore very likely work through indirect mechanisms.

14.
bioRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839779

RESUMO

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro , bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility.

15.
J Am Heart Assoc ; 9(15): e016641, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32691653

RESUMO

Background Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted association between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abundance and between Lactobacillus abundance and BP. Methods and Results We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and ß (between-sample) diversities of taxonomic composition were strongly related to BP indexes (P<0.001 for most). In multivariable-adjusted models, ß diversity was only associated with diastolic BP (P=0.032). However, we observed significant, mainly positive, associations between BP indexes and 45 microbial genera (P<0.05), of which 27 belong to the phylum Firmicutes. Interestingly, we found mostly negative associations between 19 distinct Lactobacillus species and BP indexes (P<0.05). Of these, greater abundance of the known probiotic Lactobacillus paracasei was associated with lower mean arterial pressure and lower dietary sodium intake (P<0.001 for both). Conclusions Although the associations between overall gut taxonomic composition and BP are weak, individuals with hypertension demonstrate changes in several genera. We demonstrate strong negative associations of certain Lactobacillus species with sodium intake and BP, highlighting the need for experimental studies.

16.
BMC Pulm Med ; 20(1): 193, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677943

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. METHODS: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. RESULTS: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10- 4 in the discovery and OR = 1.30, P = 1.8 × 10- 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52-2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94-1.20). CONCLUSIONS: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.

18.
J Biol Rhythms ; 35(5): 501-511, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32579418

RESUMO

Individuals with a later chronotype (evening types) tend to have unhealthier behaviors and increased morbidity and mortality as compared with those with an earlier chronotype (morning types). However, the role of genetics in explaining evening types' adverse health and health behavior is unclear. Our aim was to study genetic associations of chronotype among 8433 Finns from the cross-sectional National FINRISK 2007 and 2012 studies. First, we studied associations between chronotype and 20 key clock genes with a candidate-gene approach and then performed a full genome-wide association study (GWAS) of chronotype. We also developed a genetic risk score (GRS) for chronotype based on 313 single nucleotide polymorphisms (SNPs) that have previously been associated with chronotype. Chronotype was assessed with a shortened version of Horne and Östberg's Morningness-Eveningness Questionnaire (sMEQ), and for comparison, we also used the single self-evaluation question on chronotype from the questionnaire. Linear and logistic regression was used for statistical analysis assuming additive effects. The clock gene analysis revealed 1 independent association signal within NR1D2 (lead SNP rs4131403) that was associated with chronotype (p < 0.05; as based on both chronotype assessment methods). The GWAS analysis did not yield any genome-wide significant associations (p > 5 × 10-8). However, higher GRS was associated with evening chronotype (p < 0.001; as based on both chronotype assessment methods). In conclusion, our findings indicated novel genetic associations between chronotype and the NR1D2 clock gene, which has previously been associated with carbohydrate and lipid metabolism. Furthermore, the GRS was able to capture the genetic aspect of chronotype in our study population. These findings expand our knowledge of the genetic basis of chronotype.

19.
Nat Med ; 26(6): 869-877, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461697

RESUMO

Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson's disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns5-8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9, 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work10, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação com Perda de Função/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Mutação com Ganho de Função/genética , Heterozigoto , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Longevidade/genética , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Fenótipo
20.
PLoS Genet ; 16(5): e1008682, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369491

RESUMO

Protein-altering variants that are protective against human disease provide in vivo validation of therapeutic targets. Here we use genotyping data from UK Biobank (n = 337,151 unrelated White British individuals) and FinnGen (n = 176,899) to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through rare protein-altering variant association analysis, we find a missense variant in ANGPTL7 in UK Biobank (rs28991009, p.Gln175His, MAF = 0.8%, genotyped in 82,253 individuals with measured IOP and an independent set of 4,238 glaucoma patients and 250,660 controls) that significantly lowers IOP (ß = -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes, P = 5.96 x 10-9 and 1.07 x 10-13 for corneal compensated and Goldman-correlated IOP, respectively) and is associated with 34% reduced risk of glaucoma (P = 0.0062). In FinnGen, we identify an ANGPTL7 missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.3%), which was genotyped in 6,537 glaucoma patients and 170,362 controls and is associated with a 29% lower glaucoma risk (P = 1.9 x 10-12 for all glaucoma types and also protection against its subtypes including exfoliation, primary open-angle, and primary angle-closure). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (P = 0.0012 and 0.24 for Goldman-correlated and corneal compensated IOP, respectively), suggesting the protective mechanism likely resides in the loss of interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Glaucoma/genética , Glaucoma/prevenção & controle , Pressão Intraocular/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos/estatística & dados numéricos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Finlândia/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla , Glaucoma/epidemiologia , Humanos , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA