Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33590303

RESUMO

KEY MESSAGE: Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.

2.
Theor Appl Genet ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587151

RESUMO

KEY MESSAGE: Simulations highlight the potential of genomic selection to substantially increase genetic gain for complex traits in sugarcane. The success rate depends on the trait genetic architecture and the implementation strategy. Genomic selection (GS) has the potential to increase the rate of genetic gain in sugarcane beyond the levels achieved by conventional phenotypic selection (PS). To assess different implementation strategies, we simulated two different GS-based breeding strategies and compared genetic gain and genetic variance over five breeding cycles to standard PS. GS scheme 1 followed similar routines like conventional PS but included three rapid recurrent genomic selection (RRGS) steps. GS scheme 2 also included three RRGS steps but did not include a progeny assessment stage and therefore differed more fundamentally from PS. Under an additive trait model, both simulated GS schemes achieved annual genetic gains of 2.6-2.7% which were 1.9 times higher compared to standard phenotypic selection (1.4%). For a complex non-additive trait model, the expected annual rates of genetic gain were lower for all breeding schemes; however, the rates for the GS schemes (1.5-1.6%) were still greater than PS (1.1%). Investigating cost-benefit ratios with regard to numbers of genotyped clones showed that substantial benefits could be achieved when only 1500 clones were genotyped per 10-year breeding cycle for the additive genetic model. Our results show that under a complex non-additive genetic model, the success rate of GS depends on the implementation strategy, the number of genotyped clones and the stage of the breeding program, likely reflecting how changes in QTL allele frequencies change additive genetic variance and therefore the efficiency of selection. These results are encouraging and motivate further work to facilitate the adoption of GS in sugarcane breeding.

3.
Genes (Basel) ; 11(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317066

RESUMO

Oxford Nanopore Technologies' MinION has proven to be a valuable tool within human and microbial genetics. Its capacity to produce long reads in real time has opened up unique applications for portable sequencing. Examples include tracking the recent African swine fever outbreak in China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed applications in livestock agriculture for rapid diagnostics, base modification detection, reference genome assembly and genomic prediction. In particular, we propose a future application: 'crush-side genotyping' for real-time on-farm genotyping for extensive industries such as northern Australian beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping demonstrated promising results. SNPs were called from simulated Nanopore data, that included the relatively high base call error rate that is characteristic of the data, and calling parameters were varied to understand the feasibility of SNP calling at low coverages in a heterozygous population. With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to be correctly called with coverages as low as 6×. These results provide preliminary evidence that Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive livestock operations.

4.
PLoS Genet ; 16(9): e1008780, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925905

RESUMO

Genome-Wide Association Studies (GWAS) in large human cohorts have identified thousands of loci associated with complex traits and diseases. For identifying the genes and gene-associated variants that underlie complex traits in livestock, especially where sample sizes are limiting, it may help to integrate the results of GWAS for equivalent traits in humans as prior information. In this study, we sought to investigate the usefulness of results from a GWAS on human height as prior information for identifying the genes and gene-associated variants that affect stature in cattle, using GWAS summary data on samples sizes of 700,000 and 58,265 for humans and cattle, respectively. Using Fisher's exact test, we observed a significant proportion of cattle stature-associated genes (30/77) that are also associated with human height (odds ratio = 5.1, p = 3.1e-10). Result of randomized sampling tests showed that cattle orthologs of human height-associated genes, hereafter referred to as candidate genes (C-genes), were more enriched for cattle stature GWAS signals than random samples of genes in the cattle genome (p = 0.01). Randomly sampled SNPs within the C-genes also tend to explain more genetic variance for cattle stature (up to 13.2%) than randomly sampled SNPs within random cattle genes (p = 0.09). The most significant SNPs from a cattle GWAS for stature within the C-genes did not explain more genetic variance for cattle stature than the most significant SNPs within random cattle genes (p = 0.87). Altogether, our findings support previous studies that suggest a similarity in the genetic regulation of height across mammalian species. However, with the availability of a powerful GWAS for stature that combined data from 8 cattle breeds, prior information from human-height GWAS does not seem to provide any additional benefit with respect to the identification of genes and gene-associated variants that affect stature in cattle.


Assuntos
Estatura/genética , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Animais , Cruzamento/métodos , Bases de Dados Genéticas , Variação Genética/genética , Humanos , Gado/genética , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
5.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815548

RESUMO

Methane production from rumen methanogenesis contributes approximately 71% of greenhouse gas emissions from the agricultural sector. This study has performed genomic predictions for methane production from 99 sheep across 3 yr using a residual methane phenotype that is log methane yield corrected for live weight, rumen volume, and feed intake. Using genomic relationships, the prediction accuracies (as determined by the correlation between predicted and observed residual methane production) ranged from 0.058 to 0.220 depending on the time point being predicted. The best linear unbiased prediction algorithm was then applied to relationships between animals that were built on the rumen metabolome and microbiome. Prediction accuracies for the metabolome-based relationships for the two available time points were 0.254 and 0.132; the prediction accuracy for the first microbiome time point was 0.142. The second microbiome time point could not successfully predict residual methane production. When the metabolomic relationships were added to the genomic relationships, the accuracy of predictions increased to 0.274 (from 0.201 when only the genomic relationship was used) and 0.158 (from 0.081 when only the genomic relationship was used) for the two time points, respectively. When the microbiome relationships from the first time point were added to the genomic relationships, the maximum prediction accuracy increased to 0.247 (from 0.216 when only the genomic relationship was used), which was achieved by giving the genomic relationships 10 times more weighting than the microbiome relationships. These accuracies were higher than the genomic, metabolomic, and microbiome relationship matrixes achieved alone when identical sets of animals were used.

6.
Genet Sel Evol ; 52(1): 51, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32842956

RESUMO

BACKGROUND: Temperament traits are of high importance across species. In humans, temperament or personality traits correlate with psychological traits and psychiatric disorders. In cattle, they impact animal welfare, product quality and human safety, and are therefore of direct commercial importance. We hypothesized that genetic factors that contribute to variation in temperament among individuals within a species will be shared between humans and cattle. Using imputed whole-genome sequence data from 9223 beef cattle from three cohorts, a series of genome-wide association studies was undertaken on cattle flight time, a temperament phenotype measured as the time taken for an animal to cover a short-fixed distance after release from an enclosure. We also investigated the association of cattle temperament with polymorphisms in bovine orthologs of risk genes for neuroticism, schizophrenia, autism spectrum disorders (ASD), and developmental delay disorders in humans. RESULTS: Variants with the strongest associations were located in the bovine orthologous region that is involved in several behavioural and cognitive disorders in humans. These variants were also partially validated in independent cattle cohorts. Genes in these regions (BARHL2, NDN, SNRPN, MAGEL2, ABCA12, KIFAP3, TOPAZ1, FZD3, UBE3A, and GABRA5) were enriched for the GO term neuron migration and were differentially expressed in brain and pituitary tissues in humans. Moreover, variants within 100 kb of ASD susceptibility genes were associated with cattle temperament and explained 6.5% of the total additive genetic variance in the largest cattle cohort. The ASD genes with the most significant associations were GABRB3 and CUL3. Using the same 100 kb window, a weak association was found with polymorphisms in schizophrenia risk genes and no association with polymorphisms in neuroticism and developmental delay disorders risk genes. CONCLUSIONS: Our analysis showed that genes identified in a meta-analysis of cattle temperament contribute to neuron development functions and are differentially expressed in human brain tissues. Furthermore, some ASD susceptibility genes are associated with cattle temperament. These findings provide evidence that genetic control of temperament might be shared between humans and cattle and highlight the potential for future analyses to leverage results between species.

7.
Genet Sel Evol ; 52(1): 27, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460767

RESUMO

BACKGROUND: Distinct domestication events, adaptation to different climatic zones, and divergent selection in productive traits have shaped the genomic differences between taurine and indicine cattle. In this study, we assessed the impact of artificial selection and environmental adaptation by comparing whole-genome sequences from European taurine and Asian indicine breeds and from African cattle. Next, we studied the impact of divergent selection by exploiting predicted and experimental functional annotation of the bovine genome. RESULTS: We identified selective sweeps in beef cattle taurine and indicine populations, including a 430-kb selective sweep on indicine cattle chromosome 5 that is located between 47,670,001 and 48,100,000 bp and spans five genes, i.e. HELB, IRAK3, ENSBTAG00000026993, GRIP1 and part of HMGA2. Regions under selection in indicine cattle display significant enrichment for promoters and coding genes. At the nucleotide level, sites that show a strong divergence in allele frequency between European taurine and Asian indicine are enriched for the same functional categories. We identified nine single nucleotide polymorphisms (SNPs) in coding regions that are fixed for different alleles between subspecies, eight of which were located within the DNA helicase B (HELB) gene. By mining information from the 1000 Bull Genomes Project, we found that HELB carries mutations that are specific to indicine cattle but also found in taurine cattle, which are known to have been subject to indicine introgression from breeds, such as N'Dama, Anatolian Red, Marchigiana, Chianina, and Piedmontese. Based on in-house genome sequences, we proved that mutations in HELB segregate independently of the copy number variation HMGA2-CNV, which is located in the same region. CONCLUSIONS: Major genomic sequence differences between Bos taurus and Bos indicus are enriched for promoter and coding regions. We identified a 430-kb selective sweep in Asian indicine cattle located on chromosome 5, which carries SNPs that are fixed in indicine populations and located in the coding sequences of the HELB gene. HELB is involved in the response to DNA damage including exposure to ultra-violet light and is associated with reproductive traits and yearling weight in tropical cattle. Thus, HELB likely contributed to the adaptation of tropical cattle to their harsh environment.


Assuntos
Bovinos/genética , DNA Helicases/genética , Alelos , Animais , Sequência de Bases/genética , Cruzamento , Variações do Número de Cópias de DNA/genética , Dano ao DNA/genética , DNA Helicases/metabolismo , Domesticação , Feminino , Frequência do Gene/genética , Genótipo , Masculino , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Seleção Genética/genética , Sequenciamento Completo do Genoma
8.
Genet Sel Evol ; 52(1): 28, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460805

RESUMO

BACKGROUND: In tropically-adapted beef heifers, application of genomic prediction for age at puberty has been limited due to low prediction accuracies. Our aim was to investigate novel methods of pre-selecting whole-genome sequence (WGS) variants and alternative analysis methodologies; including genomic best linear unbiased prediction (GBLUP) with multiple genomic relationship matrices (MGRM) and Bayesian (BayesR) analyses, to determine if prediction accuracy for age at puberty can be improved. METHODS: Genotypes and phenotypes were obtained from two research herds. In total, 868 Brahman and 960 Tropical Composite heifers were recorded in the first population and 3695 Brahman, Santa Gertrudis and Droughtmaster heifers were recorded in the second population. Genotypes were imputed to 23 million whole-genome sequence variants. Eight strategies were used to pre-select variants from genome-wide association study (GWAS) results using conditional or joint (COJO) analyses. Pre-selected variants were included in three models, GBLUP with a single genomic relationship matrix (SGRM), GBLUP MGRM and BayesR. Five-way cross-validation was used to test the effect of marker panel density (6 K, 50 K and 800 K), analysis model, and inclusion of pre-selected WGS variants on prediction accuracy. RESULTS: In all tested scenarios, prediction accuracies for age at puberty were highest in BayesR analyses. The addition of pre-selected WGS variants had little effect on the accuracy of prediction when BayesR was used. The inclusion of WGS variants that were pre-selected using a meta-analysis with COJO analyses by chromosome, fitted in a MGRM model, had the highest prediction accuracies in the GBLUP analyses, regardless of marker density. When the low-density (6 K) panel was used, the prediction accuracy of GBLUP was equal (0.42) to that with the high-density panel when only six additional sequence variants (identified using meta-analysis COJO by chromosome) were included. CONCLUSIONS: While BayesR consistently outperforms other methods in terms of prediction accuracies, reasonable improvements in accuracy can be achieved when using GBLUP and low-density panels with the inclusion of a relatively small number of highly relevant WGS variants.


Assuntos
Bovinos/genética , Genômica/métodos , Maturidade Sexual/genética , Animais , Teorema de Bayes , Cruzamento , Feminino , Genoma/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Maturidade Sexual/fisiologia , Sequenciamento Completo do Genoma/métodos
9.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32318708

RESUMO

Brahman cattle (Bos indicus) are well adapted to thrive in tropical environments. Since their introduction to Australia in 1933, Brahman's ability to grow and reproduce on marginal lands has proven their value in the tropical beef industry. The poll phenotype, which describes the absence of horns, has become desirable in the cattle industry for animal welfare and handler safety concerns. The poll locus has been mapped to chromosome one. Four alleles, each a copy number variant, have been reported across this locus in B. indicus and Bos taurus. However, the causative mutation in Brahman cattle has not been fully characterized. Oxford Nanopore Technologies' minION sequencer was used to sequence four homozygous poll (PcPc), four homozygous horned (pp), and three heterozygous (Pcp) Brahmans to characterize the poll allele in Brahman cattle. A total of 98 Gb were sequenced and an average coverage of 3.33X was achieved. Read N50 scores ranged from 9.9 to 19 kb. Examination of the mapped reads across the poll locus revealed insertions approximately 200 bp in length in the poll animals that were absent in the horned animals. These results are consistent with the Celtic poll allele, a 212-bp duplication that replaces 10 bp. This provides direct evidence that the Celtic poll allele is segregating in the Australian Brahman population.


Assuntos
Alelos , Bovinos/genética , Sequenciamento por Nanoporos , Animais , Bovinos/fisiologia , Cornos/fisiologia
10.
Theor Appl Genet ; 133(3): 1009-1018, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31907563

RESUMO

KEY MESSAGE: Multi-environment models using marker-based kinship information for both additive and dominance effects can accurately predict hybrid performance in different environments. Sorghum is an important hybrid crop that is grown extensively in many subtropical and tropical regions including Northern NSW and Queensland in Australia. The highly varying weather patterns in the Australian summer months mean that sorghum hybrids exhibit a great deal of variation in yield between locations. To ultimately enable prediction of the outcome of crossing parental lines, both additive effects on yield performance and dominance interaction effects need to be characterised. This paper demonstrates that fitting a linear mixed model that includes both types of effects calculated using genetic markers in relationship matrices improves predictions. Genotype by environment interactions was investigated by comparing FA1 (single-factor analytic) and FA2 (two-factor analytic) structures. The G×E causes a change in hybrid rankings between trials with a difference of up to 25% of the hybrids in the top 10% of each trial. The prediction accuracies increased with the addition of the dominance term (over and above that achieved with an additive effect alone) by an average of 15% and a maximum of 60%. The percentage of dominance of the total genetic variance varied between trials with the trials with higher broad-sense heritability having the greater percentage of dominance. The inclusion of dominance in the factor analytic models improves the accuracy of the additive effects. Breeders selecting high yielding parents for crossing need to be aware of effects due to environment and dominance.


Assuntos
Melhoramento Vegetal , Sorghum/genética , Austrália , Clima , Epistasia Genética , Genes Dominantes , Estudos de Associação Genética , Marcadores Genéticos , Variação Genética , Genômica , Genótipo , Modelos Genéticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sorghum/crescimento & desenvolvimento
11.
G3 (Bethesda) ; 10(2): 539-544, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767638

RESUMO

Many breeds of modern cattle are naturally horned, and for sound husbandry management reasons the calves frequently undergo procedures to physically remove the horns by disbudding or dehorning. These procedures are however a welfare concern. Selective breeding for polledness - absence of horns - has been effective in some cattle breeds but not in others (Bos indicus genotypes) due in part to the complex genetics of horn phenotype. To address this problem different approaches to genetic testing which provide accurate early-in-life prediction of horn phenotype have been evaluated, initially using microsatellites (MSAT) and more recently single nucleotide polymorphism (SNP). A direct gene test is not effective given the genetic heterogeneity and large-sized sequence variants associated with polledness in different breeds. The current study investigated 39,943 animals of multiple breeds to assess the accuracy of available poll testing assays. While the standard SNP-based test was an improvement on the earlier MSAT haplotyping method, 1999 (9.69%) out of 20,636 animals tested with this SNP-based assay did not predict a genotype, most commonly associated with the Indicus-influenced breeds. The current study has developed an optimized poll gene test that resolved the vast majority of these 1999 unresolved animals, while the predicted genotypes of those previously resolved remained unchanged. Hence the optimized poll test successfully predicted a genotype in 99.96% of samples assessed. We demonstrated that a robust set of 5 SNPs can effectively determine PC and PF alleles and eliminate the ambiguous and undetermined results of poll gene testing previously identified as an issue in cattle.


Assuntos
Bovinos/genética , Cornos , Animais , Testes Genéticos , Genótipo , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Artificial
12.
Front Plant Sci ; 10: 1364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803197

RESUMO

Breeding schemes that utilize modern breeding methods like genomic selection (GS) and speed breeding (SB) have the potential to accelerate genetic gain for different crops. We investigated through stochastic computer simulation the advantages and disadvantages of adopting both GS and SB (SpeedGS) into commercial breeding programs for allogamous crops. In addition, we studied the effect of omitting one or two selection stages from the conventional phenotypic scheme on GS accuracy, genetic gain, and inbreeding. As an example, we simulated GS and SB for five traits (heading date, forage yield, seed yield, persistency, and quality) with different genetic architectures and heritabilities (0.7, 0.3, 0.4, 0.1, and 0.3; respectively) for a tall fescue breeding program. We developed a new method to simulate correlated traits with complex architectures of which effects can be sampled from multiple distributions, e.g. to simulate the presence of both minor and major genes. The phenotypic selection scheme required 11 years, while the proposed SpeedGS schemes required four to nine years per cycle. Generally, SpeedGS schemes resulted in higher genetic gain per year for all traits especially for traits with low heritability such as persistency. Our results showed that running more SB rounds resulted in higher genetic gain per cycle when compared to phenotypic or GS only schemes and this increase was more pronounced per year when cycle time was shortened by omitting cycle stages. While GS accuracy declined with additional SB rounds, the decline was less in round three than in round two, and it stabilized after the fourth SB round. However, more SB rounds resulted in higher inbreeding rate, which could limit long-term genetic gain. The inbreeding rate was reduced by approximately 30% when generating the initial population for each cycle through random crosses instead of generating half-sib families. Our study demonstrated a large potential for additional genetic gain from combining GS and SB. Nevertheless, methods to mitigate inbreeding should be considered for optimal utilization of these highly accelerated breeding programs.

13.
Genetics ; 213(2): 361-378, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31431471

RESUMO

De novo mutations (DNM) create new genetic variance and are an important driver for long-term selection response. We hypothesized that genomic selection exploits mutational variance less than traditional selection methods such as mass selection or selection on pedigree-based breeding values, because DNM in selection candidates are not captured when the selection candidates' own phenotype is not used in genomic selection, DNM are not on SNP chips and DNM are not in linkage disequilibrium with the SNP on the chip. We tested this hypothesis with Monte Carlo simulation. From whole-genome sequence data, a subset of ∼300,000 variants was used that served as putative markers, quantitative trait loci or DNM. We simulated 20 generations with truncation selection based on breeding values from genomic best linear unbiased prediction without (GBLUP_no_OP) or with own phenotype (GBLUP_OP), pedigree-based BLUP without (BLUP_no_OP) or with own phenotype (BLUP_OP), or directly on phenotype. GBLUP_OP was the best strategy in exploiting mutational variance, while GBLUP_no_OP and BLUP_no_OP were the worst in exploiting mutational variance. The crucial element is that GBLUP_no_OP and BLUP_no_OP puts no selection pressure on DNM in selection candidates. Genetic variance decreased faster with GBLUP_no_OP and GBLUP_OP than with BLUP_no_OP, BLUP_OP or mass selection. The distribution of mutational effects, mutational variance, number of DNM per individual and nonadditivity had a large impact on mutational selection response and mutational genetic variance, but not on ranking of selection strategies. We advocate that more sustainable genomic selection strategies are required to optimize long-term selection response and to maintain genetic diversity.


Assuntos
Genoma/genética , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética , Seleção Genética/genética , Animais , Teorema de Bayes , Cruzamento , Genótipo , Modelos Genéticos , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único/genética
14.
Nat Plants ; 5(7): 706-714, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209285

RESUMO

The world cropping area for wheat exceeds that of any other crop, and high grain yields in intensive wheat cropping systems are essential for global food security. Breeding has raised yields dramatically in high-input production systems; however, selection under optimal growth conditions is widely believed to diminish the adaptive capacity of cultivars to less optimal cropping environments. Here, we demonstrate, in a large-scale study spanning five decades of wheat breeding progress in western Europe, where grain yields are among the highest worldwide, that breeding for high performance in fact enhances cultivar performance not only under optimal production conditions but also in production systems with reduced agrochemical inputs. New cultivars incrementally accumulated genetic variants conferring favourable effects on key yield parameters, disease resistance, nutrient use efficiency, photosynthetic efficiency and grain quality. Combining beneficial, genome-wide haplotypes could help breeders to more efficiently exploit available genetic variation, optimizing future yield potential in more sustainable production systems.


Assuntos
Agroquímicos/farmacologia , Triticum/crescimento & desenvolvimento , Agroquímicos/análise , Genoma de Planta , Haplótipos , Fotossíntese , Melhoramento Vegetal , Sementes/química , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo
15.
Nat Biotechnol ; 37(7): 744-754, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209375

RESUMO

Crop improvements can help us to meet the challenge of feeding a population of 10 billion, but can we breed better varieties fast enough? Technologies such as genotyping, marker-assisted selection, high-throughput phenotyping, genome editing, genomic selection and de novo domestication could be galvanized by using speed breeding to enable plant breeders to keep pace with a changing environment and ever-increasing human population.


Assuntos
Produtos Agrícolas/genética , Abastecimento de Alimentos , Engenharia Genética/métodos , Humanos , Melhoramento Vegetal , Crescimento Demográfico
16.
Genet Sel Evol ; 51(1): 29, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221081

RESUMO

BACKGROUND: Selection of cattle that are less sensitive to environmental variation in unfavorable environments and more adapted to harsh conditions is of primary importance for tropical beef cattle production systems. Understanding the genetic background of sensitivity to environmental variation is necessary for developing strategies and tools to increase efficiency and sustainability of beef production. We evaluated the degree of sensitivity of beef cattle performance to environmental variation, at the animal and molecular marker levels (412 K single nucleotide polymorphisms), by fitting and comparing the results of different reaction norm models (RNM), using a comprehensive dataset of Nellore cattle raised under diverse environmental conditions. RESULTS: Heteroscedastic RNM (with different residual variances for environmental level) provided better fit than homoscedastic RNM. In addition, spline and quadratic RNM outperformed linear RNM, which suggests the existence of a nonlinear genetic component affecting the performance of Nellore cattle. This nonlinearity indicates that within-animal sensitivity depends on the environmental gradient (EG) level and that animals may present different patterns of sensitivity according to the range of environmental variations. The spline RNM showed that sensitivity to environmental variation from harsh to average EG is lowly correlated with sensitivity from average to good EG, at both the animal and molecular marker levels. Although the genomic regions that affect sensitivity in harsher environments were not the same as those associated with less challenging environments, the candidate genes within those regions participate in common biological processes such as those related to inflammatory and immune response. Some plausible candidate genes were identified. CONCLUSIONS: Sensitivity of tropical beef cattle to environmental variation is not continuous along the environmental gradient, which implies that animals that are less sensitive to harsher conditions are not necessarily less responsive to variations in better environmental conditions, and vice versa. The same pattern was observed at the molecular marker level, i.e. genomic regions and, consequently, candidate genes associated with sensitivity to harsh conditions were not the same as those associated with sensitivity to less challenging conditions.


Assuntos
Bovinos/genética , Interação Gene-Ambiente , Animais , Feminino , Estudo de Associação Genômica Ampla/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Clima Tropical , Ganho de Peso/genética
17.
Sci Rep ; 9(1): 2137, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765736

RESUMO

Human milk contains abundant oligosaccharides (OS) which are believed to have strong health benefits for neonates. OS are a minor component of bovine milk and little is known about how the production of OS is regulated in the bovine mammary gland. We have measured the abundance of 12 major OS in milk of 360 cows, which had high density SNP marker genotypes. Most of the OS were found to be highly heritable (h2 between 50 and 84%). A genome-wide association study allowed us to fine-map several QTL and identify candidate genes with major effects on five OS. Among them, a putative causal mutation close to the ABO gene on Chromosome 11 accounted for approximately 80% of genetic variance for two OS, N-acetylgalactosaminyllactose and lacto-N-neotetraose. This mutation lies very close to a variant associated with the expression levels of ABO. A third QTL mapped close to ST3GAL6 on Chromosome 1 explaining 33% of genetic variation of an abundant OS, 3'-sialyllactose. The presence of major gene effects suggests that targeted marker-assisted selection would lead to a significant increase in the level of these OS in milk. This is the first attempt to map candidate genes and causal mutations for bovine milk OS.


Assuntos
Mapeamento Cromossômico/veterinária , Estudo de Associação Genômica Ampla/veterinária , Leite/metabolismo , Mutação , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Locos de Características Quantitativas , Animais , Bovinos , Feminino , Leite/química , Polimorfismo de Nucleotídeo Único
18.
Hortic Res ; 6: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30603092

RESUMO

The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.

19.
Annu Rev Anim Biosci ; 7: 89-102, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30508490

RESUMO

The 1000 Bull Genomes Project is a collection of whole-genome sequences from 2,703 individuals capturing a significant proportion of the world's cattle diversity. So far, 84 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions have been identified in the collection, a very high level of genetic diversity. The project has greatly accelerated the identification of deleterious mutations for a range of genetic diseases, as well as for embryonic lethals. The rate of identification of causal mutations for complex traits has been slower, reflecting the typically small effect size of these mutations and the fact that many are likely in as-yet-unannotated regulatory regions. Both the deleterious mutations that have been identified and the mutations associated with complex trait variation have been included in low-cost SNP array designs, and these arrays are being genotyped in tens of thousands of dairy and beef cattle, enabling management of deleterious mutations in these populations as well as genomic selection.


Assuntos
Bovinos/genética , Genoma/genética , Genômica , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Mapeamento Cromossômico , Genótipo , Masculino , Mutação , Fenótipo , Sequenciamento Completo do Genoma
20.
J Anim Sci ; 97(1): 55-62, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371787

RESUMO

Developing accurate genomic evaluations of fertility for tropical beef cattle must deal with at least two major challenges (i) recording cow fertility traits in extensive production systems on large numbers of cows and (ii) the genomic evaluations should work across the breeds, crossbreds, and composites used in tropical beef production. Here, we assess accuracy of genomic evaluations for a trait which can be collected on a large scale in extensive conditions, corpus luteum score (CLscore), which is 1 if ovarian scanning indicates a heifer has cycled by 600 d and 0 if not, in a multi-breed population. A total of 3,696 heifers, including 979 Brahmans, 914 Droughtmasters, and 1,803 Santa Gertrudis in seven herds across 3-yr cohorts with CLscores, were genotyped for 24,211 SNPs. Genotypes were imputed to 728,785 SNPs. GBLUP and BayesR were used to predict GEBV. Accuracy of GEBV was evaluated with two validation strategies. In the first strategy, the last year cohort of heifers from each herd was used for validation, such that every herd had heifers in both reference and validation populations. In the second validation strategy, each herd in turn was removed in its entirety from the reference population, and was used for validation. For both validation strategies, accuracy of GEBV for single breed and multi-breed reference populations was assessed. For the first validation strategy, accuracy of GEBV ranged from 0.2 for Brahmans to 0.4 for Droughtmasters. Increasing marker density from 24K SNPs to 728K SNPs resulted in a small increase in accuracy, and including multiple-breeds in the reference did not help improve accuracy. These results suggest that provided a herd has animals in the reference population, the accuracy of the GEBV is largely determined by within herd (linkage) information. The situation was very different when entire herds were predicted in the second validation. In this case accuracy of GEBV using only 24K SNPs and only a within breed reference was close to zero for all breeds. Accuracy increased substantially when 728K SNPs, BayesR, and a multi-breed reference were used, from 0.15 for Brahmans to 0.35 for Santa Gertrudis. Given the second validation strategy is more likely to reflect the situation for many herds in tropical beef production (no animals in the reference), genomic evaluations for fertility in tropical beef cattle should be based on high-density markers (728K SNPs) and should be multi-breed.


Assuntos
Bovinos/genética , Fertilidade/genética , Genoma/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Animais , Cruzamento , Bovinos/fisiologia , Feminino , Genótipo , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...