Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33538974

RESUMO

While urban open spaces have been shrinking with the rapid urbanization, rooftop space use is an alternative solution to such problems. Rooftop thermal environment is a critical consideration under global warming and local warming. Although there have been studies on rooftop thermal environment, variation of rooftop thermal environment with roof typology has not been fully revealed to support rooftop space design. To fill this gap, a field experiment was conducted over green roof (GR), wooden roof (WR), and shaded roof (SR) in a temperate city of Kitakyushu, Japan. Environmental parameters such as solar radiation, air temperature, and relative humidity at different heights of these three roofs were recorded, to understand rooftop thermal environment and daily heat stress variation with rooftop types and the height above roof surface. The results indicate that WR had the highest diurnal near-surface temperature and the worst heat stress, where the near-surface heat stress could even reach the danger level. GR exhibited the lowest diurnal near-surface temperature and heat stress, where the heat stress was only under caution and almost safe condition. SR exhibited the lowest diurnal 1-m temperature and SR had the weakest heat stress, indicating the significance of installing shading devices for rooftop thermal environment improvement and heat stress alleviation. GR exhibited excellent performance in reducing air temperature and heat stress at the pedestrian level, where its worst heat stress was only in caution condition. Compared with that at 1-m height, moreover, 1-cm temperature and heat stress of WR and SR were generally higher, indicating that people may undergo worse heat stress when kneeling or sitting compared with upright activities. Moreover, GR suppressed near-surface heat stress due to its excellent cooling performance.

2.
Environ Res ; : 110584, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285157

RESUMO

Heat waves (HWs) and urban heat islands (UHIs) can potentially interact. The mechanisms behind their synergy are not fully disclosed. Starting from the localized UHI phenomenon, this study aims i) to reveal their associated impacts on human thermal comfort through three different definitions of HW events, based on air temperature (airT), wet-bulb globe temperature (WBGT) and human-perceived temperature (AppT) respectively, and ii) to understand the role of air moisture and wind. The analysis was conducted in four districts (NH, JD, MH and XJH) with different urban development patterns and geographic conditions, in the megacity of Shanghai with a subtropical humid climate. Results evidenced the localized interplay between HWs and UHIs. The results indicate that less urbanized districts were generally more sensitive to the synergies. JD district recorded the highest urban heat island intensity (UHII) amplification, regardless of the specific HW definition. Notably, during AppT-HWs, the increment was observed in terms of maximum (1.3 °C), daily average (0.8 °C), diurnal (0.4 °C) and nocturnal UHII (1.0 °C). Nevertheless, localized synergies between HWs and UHIs at different stations also exhibited some commonalities. Under airT-HW, the UHII was amplified throughout the day at all stations. Under WBGT-HW, diurnal UHII (especially at 11:00-17:00 LST) was consistently amplified at all stations. Under AppT-HW conditions, the nocturnal UHII was slightly amplified at all stations. Air moisture and wind alleviated the synergistic heat exacerbation to the benefit of thermal comfort. The extent depended on geographic condition, diurnal and nocturnal scenarios, temperature type and HW/normal conditions. Stronger HW-UHI synergies indicate the necessity to develop specific urban heat emergency response plans, able to capture and intervene on the underlying mechanisms. This study paves to way to their identification.

3.
Build Simul ; : 1-19, 2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32983398

RESUMO

This study analyzes the growth and reproduction of dust accumulated fungi (DAF) in an air-conditioning system based on field measurement and molecular biology, laboratory experiment and prediction modelling. The field measurement was conducted to collect dust in filter screen, surface cooler and air supply duct of two air handling units (AHUs). The results indicate that dust volume and fungal number in two AHUs generally met the hygienic specification of public buildings, but the cleansing did not fulfil requirements. High-throughput sequencing was conducted, revealing that the dominant fungal species were Alternaria_betae-kenyensis, Cladosporium_delicatulum, Aspergillus_sydowii, Verticillium_dahliae. Laboratory experiment was conducted to analyze the impact of several factors (e.g. growth time, temperature, relative humidity, duct material) and their combination on the DAF growth. The results indicate that fungal growth increased with time, peaking at 4 days or 5 days. Higher relative humidity or temperature was conducive to fungal growth. The orthogonal experiment revealed that the condition of "antibacterial composite, 22 ± 1 °C and 45%-55% RH" had the strongest inhibiting impact on fungal growth. Logistic model, Gompertz model and square-root model were further developed to predict the fungal growth under different conditions. The results show that the Logistic model had high feasibility and accuracy, the Gompertz model was feasible with lower accuracy and the square-root model was feasible with high accuracy. Overall, this study facilitates the understanding of the DAF growth in air-conditioning ducts, which is important for real-time prediction and timely control of the fungal contamination.

4.
Sci Total Environ ; 708: 134742, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31806338

RESUMO

Fungal spore resuspension on the surfaces of the heating, ventilation and air-conditioning (HVAC) ducts have been verified as one of the most important factors causing indoor biological pollution. To effectively control indoor bioaerosols pollution, it is essential to understand the resuspension characteristics of fungal spores in HVAC ducts. Therefore, this study aims to investigate the movement behavior of particles and further the variation of particle resuspension with HVAC operation mode. Based on the experimental and numerical study, this study specifically investigated the micro-movement behavior of particles and impact of particle size (1, 4, 7 and 10 µm), air temperature (9, 15 and 30 °C), relative humidity (20, 50 and 80%), duct surface roughness (0.5 and 50 µm) and air velocity (0.3, 0.9, 1.5 and 2.5 m/s) on the short-term resuspension of particle in horizontal HVAC ducts. Results indicate that spore particles were dominantly rolling off rather than sliding or being lifted into the air. Compared with larger particles, smaller ones were more sensitive to the wall roughness. The resuspension rate of spores was mainly affected by airflow velocity and particle size, where the resuspension rate of particles increased by up to six times with the increase of airflow velocity from 0.9 to 2.5 m/s. In comparison, either air temperature or relative humidity made negligible difference to particle resuspension rate. Overall, this study provides the knowledge of fungal spore resuspension in HVAC ducts, laying the foundation for effectively controlling the indoor biological pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Esporos Fúngicos , Ar Condicionado , Calefação , Ventilação
5.
Artigo em Inglês | MEDLINE | ID: mdl-30832282

RESUMO

The ecological status of the semi-arid steppes in China is fragile. Under the long-term and high-intensity development of mining, the ecological integrity and biodiversity of steppe landscapes have been destroyed, causing soil pollution, grassland degradation, landscape function defect, and so on. Previous studies have mainly focused on ecosystem health assessment in mining areas. Landscape ecological health (LEH) pays more attention to the interactions between different ecosystems. Therefore, the ecological assessment of mining cities is more suitable on a landscape scale. Meanwhile, the existing LEH assessment index systems are not applicable in ecologically fragile areas with sparse population, underdeveloped economy, and in relatively small research areas. The purpose of this study was to construct a LEH assessment index system and evaluate the LEH of a mining city located in a semi-arid steppe. Xilinhot is a typical semi-arid steppe mining city in China. The contradictions between the human, land and ecological environment are serious. A new model Condition, Vigor, Organization, Resilience, and Ecosystem (CVORE) model was constructed that integrated five subsystems (services) from the perspectives of ecology, landscape ecology, mining science, and geography. This study used the CVORE model to systematically evaluate the LEH in Xilinhot city in terms of five LEH levels, including very healthy, healthy, sub-healthy, unhealthy and morbid landscape. Research results show that the areas of the very healthy, healthy, sub-healthy, unhealthy and morbid landscapes are 13.23, 736.35, 184.5, 66.76 and 20.63 km², respectively. The healthy landscapes area accounts for 72.08% and most grasslands are healthy. The sub-healthy landscapes are mainly located around areas with higher disturbances due to human activities. The morbid or unhealthy landscapes are concentrated in the mining areas. The proposed CVORE model can enrich the foundations for the quantitative assessment of Landscape Ecological Health of Mining Cities in Semi-arid Steppe (LEHMCSS). This study provided a new LEH assessment approach (CVORE model), which can support landscape ecological restoration, ecological environmental protection and urban planning of the semi-arid steppe mining cities.


Assuntos
Planejamento de Cidades , Conservação dos Recursos Naturais , Ecossistema , Mineração , Biodiversidade , China , Cidades , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-30634535

RESUMO

Growing and densifying cities set a challenge for preserving and enhancing green spaces to cool urban spaces. Green roofs, involving the planting of vegetation on rooftops, are regarded as an alternative approach to enhancing urban greenery and urban cooling. For better cooling performances, it is essential to reasonably configure green roofs, especially in real and complex neighborhoods. Therefore, the aim of this paper is to investigate the impact of morphological characteristics of green roofs on pedestrian cooling in real and complex neighborhoods. In specific, based on an ENVI-met model, we studied the effect of greening layout, coverage ratio, vegetation height, and building height on pedestrian air temperature reduction in the tropical city of Hangzhou, China. Results indicate green roofs could generate moderate effects on pedestrian air temperature reduction (around 0.10⁻0.30 °C), while achieving a cooling performance of 0.82 °C. Green roofs in upwind zones were able to generate the most favorable cooling performance, while green roofs in downwind zones made slight differences to pedestrian thermal environments. Green roofs with a low coverage ratio were not useful for lowering pedestrian temperature, and a greening coverage ratio of 25⁻75% in upwind zones was cost-effective in real neighborhoods. Locations that were horizontally close to green roofs enjoyed better cooling performances. Increasing vegetation height could strengthen cooling effects of green roofs, while an increase in building height weakened the cooling performance. Nevertheless, higher building height could enhance pedestrian cooling performances because of building shading effects. In addition, because of wind effects and building shading, building height limits for the cooling performance of green roofs could be higher than 60 m.


Assuntos
Arquitetura de Instituições de Saúde , Pedestres , Plantas , Temperatura , China , Cidades , Clima , Conservação dos Recursos Naturais
7.
Sci Total Environ ; 472: 1137-44, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24365517

RESUMO

Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental/métodos , Ar Condicionado , Poluição do Ar em Ambientes Fechados/análise , Simulação por Computador , Habitação , Software , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA