Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 105: 1-14, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001369

RESUMO

The translocation of natural cell membranes to the surface of synthetic nanoparticles, which allows man-made vectors to share merits and functionalities created by nature, has been a hot subject of research in the past decade. The resulting biomimetic nanoparticles not only retain the physicochemical properties of nanomaterials, but also inherit the advantageous functions of source cells. Combined with the preponderances of both synthetic and natural platforms, the optimized biomimetic systems can maximize the drug delivery efficiency. In this review, we first summarize the preparation strategies of the biomimetic systems from the perspective of the correlation between the properties of nanoparticles and cell membranes. Six types of cell membrane-camouflaged nanoparticles are further introduced with an emphasis on their properties and performance. Finally, a concluding remark regarding the primary challenges and opportunities associated with these nanoparticles is presented. STATEMENT OF SIGNIFICANCE: Translocation of natural cell membranes to the surface of synthetic nanoparticles has been repeatedly highlighted in the past decade to endow man-made vectors with merits and functionalities created by nature; therefore, the resulting biomimetic systems not only retain the physicochemical properties of nanomaterials but also inherit the biological functions of source cells for efficient drug delivery. To provide a timely review on this hot and rapidly developing subject of research, this paper summarized recent progress on the cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy, and focused primarily on six different types of cell membrane-coated nanoparticles with an emphasis on the preparation strategies from the perspective of the correlation between the properties of nanoparticles and cell membrane.

2.
ACS Appl Mater Interfaces ; 11(11): 10578-10588, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802029

RESUMO

Hepatocellular carcinoma (HCC) poses a great threat to human health. The elegant combination of gene therapy and chemotherapy by nanocarriers has been repeatedly highlighted to realize enhanced therapeutic efficacy relative to monotreatment. However, the leading strategy to achieve the efficient codelivery of the gene and drug remains the electrostatic condensation with the nucleic acid and the hydrophobic encapsulation of drug molecules by the nanocarriers, which suffers substantially from premature drug leakage during circulation and severe off-target-associated side effects. To address these issues, we reported in this study the codelivery of liver-specific miRNA-122 and anti-cancer drug 5-fluorouracil (5-Fu) using a macromolecular prodrug approach, that is, electrostatic condensation with miRNA-122 using galactosylated-chitosan-5-fluorouracil (GC-FU). The delivery efficacy was evaluated comprehensively in vitro and in vivo. Specifically, the biocompatibility of GC-FU/miR-122 nanoparticles (NPs) was assessed by hemolysis activity analysis, BSA adsorption test, and cell viability assay in both normal liver cells (L02 cells) and endothelial cells. The resulting codelivery systems showed enhanced blood and salt stability, efficient proliferation inhibition of HCC cells, and further induction apoptosis of HCC cells, as well as downregulated expression of ADAM17 and Bcl-2. The strategy developed herein is thus a highly promising platform for an effective codelivery of miRNA-122 and 5-Fu with facile fabrication and great potential for the clinical translation toward HCC synergistic therapy.


Assuntos
Materiais Biocompatíveis/química , MicroRNAs/metabolismo , Pró-Fármacos/química , Proteína ADAM17/metabolismo , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular , Quitosana/química , Regulação para Baixo/efeitos dos fármacos , Portadores de Fármacos/química , Sinergismo Farmacológico , Fluoruracila/química , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/química , Nanopartículas/química , Nanopartículas/toxicidade , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
3.
Artif Cells Nanomed Biotechnol ; 46(sup3): S661-S670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307317

RESUMO

Hepatocellular carcinoma (HCC) is one of the greatest public health problems worldwide, and chemotherapy remains the major approach for the HCC treatment. Doxorubicin (DOX) is one of the anthracycline antibiotics but its clinical use is limited due to its severe cardiotoxicity. In this study, novel hybrid nanoparticles by self-assembling based on pectin-doxorubicin conjugates (PDC-NPs) were fabricated for HCC treatment. The stabilized structure of the PDC-NPs was characterized by methylene blue absorption, the size, zeta potential and the morphology, which was investigated by Zetasizer nanoparticle analyzer and transmission electron microscope (TEM), of nanoparticles. The PDC-NPs achieved a sustained and prolonged release ability, which was illustrated with in vitro drug release profiles, anti-cell proliferation study, cellular uptake assay and in vivo pharmacokinetics analysis. Biocompatibility of the PDC-NPs was assessed with bovine serum albumin (BSA) adsorption test, hemolysis activity examination and viability evaluation of human umbilical vein endothelial cells. Importantly, in vivo studies of the PDC-NPs, which were performed in the athymic BALB/c nude mice, demonstrated that the PDC-NPs significantly reduced the lethal side effect of DOX. Additionally, the H&E staining and serum biochemistry study further confirmed the excellent biological security of the PDC-NPs.


Assuntos
Carcinoma Hepatocelular , Doxorrubicina , Neoplasias Hepáticas , Nanopartículas , Pectinas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Pectinas/química , Pectinas/farmacocinética , Pectinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Gynecol Endocrinol ; 34(8): 719-723, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29463151

RESUMO

We investigated the association between single nucleotide polymorphisms (SNPs) in the fat mass and obesity associated (FTO) gene (rs9926289 A/G, rs79206939 A/G, rs9930506 A/G, rs8050136 A/C, and rs1588413 C/T) and polycystic ovary syndrome (PCOS), as well as outcomes of in vitro fertilization (IVF). A case-control study consisting of 147 PCOS patients and 120 healthy controls was conducted. FTO SNPs were genotyped by PCR to determine allelic frequencies, and IVF outcomes were analyzed. The results showed that FTO rs8050136 (p = .025) and rs1588413 (p = .042) were significantly associated with PCOS susceptibility, and women with risk alleles were often found to be obese (p < .05). For SNP rs8050136, women with AA + AC genotypes had higher body mass indexes (BMIs), oral glucose tolerance test/2 h (OGTT) levels and implantation rates but lower follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG) day progesterone levels and ovulation numbers (all p < .05) than those with the CC genotype. For SNP rs1588413, women carrying risk alleles exhibited higher BMIs, implantation rate, and levels of luteinizing hormone (LH), estradiol, and OGTT/2 h (all p < .05) compared with those with non-risk genotypes. Therefore, these findings suggest that rs8050136 and rs1588413 are associated with PCOS susceptibility, and that women with risk alleles have less ovulation numbers but higher implantation rates than those with other genotypes.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Fertilização In Vitro/estatística & dados numéricos , Infertilidade Feminina/terapia , Síndrome do Ovário Policístico/genética , Adulto , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Infertilidade Feminina/etiologia , Polimorfismo de Nucleotídeo Único , Gravidez , Adulto Jovem
5.
Drug Deliv ; 24(1): 459-466, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28219253

RESUMO

A novel type of macromolecular prodrug delivery system is reported in this research. The N-galactosylated-chitosan-5-fluorouracil acetic acid conjugate (GC-FUA) based nanoparticle delivery system was evaluated in vitro and in vivo. Biocompatibility of GC-FUA-NPs was screened by BSA adsorption test and hemolysis activity examination in vitro. Cytotoxicity and cellular uptake study in HepG2 and A549 cells demonstrated that compared to free 5-Fu, the GC-FUA-NPs play great function in killing cancer cells for the cell endocytosis mediated by asialoglycoprotein receptor (ASGPR), which overexpresses on the cell surface. Pharmacokinetics study further illustrated that the drug-loaded nanoparticles has a much longer half-time than free 5-Fu in blood circulation in Sprague-Dawley (SD) rats. Tissue distribution was investigated in Kunming mice, and the result showed that the GC-FUA-NPs have a long circulation effect. The obtained data suggested that GC-FUA-NP is a very promising drug delivery system for efficient treatment of hepatocellular carcinoma.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/análogos & derivados , Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Fluoruracila/análogos & derivados , Fluoruracila/administração & dosagem , Nanopartículas/química , Pró-Fármacos/administração & dosagem , Células A549 , Absorção Fisiológica , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quitosana/efeitos adversos , Quitosana/farmacocinética , Quitosana/farmacologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Fluoruracila/efeitos adversos , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Glicosilação , Meia-Vida , Hemólise/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Coelhos , Distribuição Aleatória , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Curr Top Med Chem ; 16(3): 281-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26126914

RESUMO

Self-assembled peptide nanomaterials display the advantageous properties of injectability, biodegradability and biocompatibility. These peptide nanomaterials, by self-assembling, can be widely applied in such fields as drug delivery (small molecules and large molecules), regenerative medicine and nanobiotechnology. In this review, we mainly discuss the properties of these peptide nanomaterials in their physical, chemical and biological aspects. Also discussed are recent advances in their potential applications as drug delivery systems and for uses in regenerative medicine. These current advances show a bright future for the development and clinical applications of self-assembled peptide-based nanotechnology and nanomedicine. However, there are still some big challenges for us to face before these peptide nanomaterials eventually can be used for the treatment of human diseases.


Assuntos
Nanomedicina , Nanoestruturas/química , Peptídeos/química , Medicina Regenerativa , Animais , Sistemas de Liberação de Medicamentos , Humanos , Peptídeos/síntese química
7.
Mol Pharm ; 11(2): 638-44, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24383625

RESUMO

The fabrication and evaluation of a natural pectin-based drug delivery system are reported in this study. The drug delivery system displays specific active targeting ability to hepatocellular carcinoma due to the presence of excess galactose residues in the polymer structure as the natural targeting ligands. The system was prepared under very mild conditions in an aqueous medium containing Ca(2+) and CO3(2-) ions, generating uniform pectin-based nanoparticles with an average diameter of 300 nm, and the drug-loading content of anticancer drug 5-fluorouracil (5-FU) is around 24.8%. Cytotoxicity study of the 5-FU-loaded nanoparticles (5-FU-NPs) in HepG2 and A549 cell lines demonstrated their greater potency in killing cancer cells with overexpressed asialoglycoprotein receptor (ASGPR) on the cell surface, compared to that of the free drug. Pharmacokinetics study using Sprague-Dawley (SD) rats further confirmed that the drug-loaded nanoparticles showed a much longer half-life in the circulation fluids than the free drug. Tissue distribution was investigated on Kunming mice, and the results also demonstrated that the 5-FU-NPs has a long circulation effect. Taken together, the pectin-based drug delivery systems exhibit size-induced prolonged circulation as well as ASGP receptor-mediated targeting ability to cancer cell lines; therefore, it is a promising platform for the treatment of hepatocellular carcinoma.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/uso terapêutico , Pectinas/farmacologia , Pectinas/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bioensaio , Cápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Concentração Inibidora 50 , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Pectinas/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA