Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
BMC Genomics ; 22(Suppl 5): 544, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789143

RESUMO

BACKGROUND: With the rapid increase in the amount of Protein-Protein Interaction (PPI) data, the establishment of an event-centered PPI ontology that contains temporal and spatial vocabularies is urgently needed to clarify PPI biological annotations. In this paper, we propose a precisely designed schema - PPIO (PPI Ontology) for representing the biological context of PPIs. RESULTS: Inspired by the event model and the distinct characteristics of PPI events, PPIO consists of six core aspects of the information required for reporting a PPI event, including the interactor (who), the biological process (when), the subcellular location (where), the interaction type (how), the biological function (what) and the detection method (which). PPIO is implemented through the integration of appropriate terms from the corresponding vocabularies/ontologies, e.g., Gene Ontology, Protein Ontology, PSI-MI/MOD, etc. To assess PPIO, an approach based on PPIO in developed to extract PPI biological annotations from an open standard corpus "BioCreAtIvE-PPI". The experiment results demonstrate PPIO's high performance, a precision of 0.69, a recall of 0.72 and an F-score of 0.70. CONCLUSIONS: PPIO is a well-constructed essential ontology in the interpretation of PPI biological context. The results of the experiments conducted on the BioCreAtIvE corpus demonstrate that PPIO is able to facilitate PPI annotation extraction from biomedical literature effectively and enrich essential annotation for PPIs.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Ontologia Genética
3.
Cell Chem Biol ; 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34672954

RESUMO

The global epidemic caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in the infection of over 200 million people. To extend the knowledge of interactions between SARS-CoV-2 and humans, we systematically investigate the interactome of 29 viral proteins in human cells by using an antibody-based TurboID assay. In total, 1,388 high-confidence human proximal proteins with biotinylated sites are identified. Notably, we find that SARS-CoV-2 manipulates the antiviral and immune responses. We validate that the membrane protein ITGB1 associates angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 entry. Moreover, we reveal that SARS-CoV-2 proteins inhibit activation of the interferon pathway through the mitochondrial protein mitochondrial antiviral-signaling protein (MAVS) and the methyltransferase SET domain containing 2, histone lysine methyltransferase (SETD2). We propose 111 potential drugs for the clinical treatment of coronavirus disease 2019 (COVID-19) and identify three compounds that significantly inhibit the replication of SARS-CoV-2. The proximity labeling map of SARS-CoV-2 and humans provides a resource for elucidating the mechanisms of viral infection and developing drugs for COVID-19 treatment.

4.
Nucleic Acids Res ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669962

RESUMO

As an important post-translational modification, ubiquitination mediates ∼80% of protein degradation in eukaryotes. The degree of protein ubiquitination is tightly determined by the delicate balance between specific ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase-mediated deubiquitination. In 2017, we developed UbiBrowser 1.0, which is an integrated database for predicted human proteome-wide E3-substrate interactions. Here, to meet the urgent requirement of proteome-wide E3/deubiquitinase-substrate interactions (ESIs/DSIs) in multiple organisms, we updated UbiBrowser to version 2.0 (http://ubibrowser.ncpsb.org.cn). Using an improved protocol, we collected 4068/967 known ESIs/DSIs by manual curation, and we predicted about 2.2 million highly confident ESIs/DSIs in 39 organisms, with >210-fold increase in total data volume. In addition, we made several new features in the updated version: (i) it allows exploring proteins' upstream E3 ligases and deubiquitinases simultaneously; (ii) it has significantly increased species coverage; (iii) it presents a uniform confidence scoring system to rank predicted ESIs/DSIs. To facilitate the usage of UbiBrowser 2.0, we also redesigned the web interface for exploring these known and predicted ESIs/DSIs, and added functions of 'Browse', 'Download' and 'Application Programming Interface'. We believe that UbiBrowser 2.0, as a discovery tool, will contribute to the study of protein ubiquitination and the development of drug targets for complex diseases.

5.
Cell Discov ; 7(1): 76, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465742

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). The development of COVID-19 may be the result of a complex interaction between the microbial, environmental, and host genetic components. To reveal genetic determinants of susceptibility to COVID-19 severity in the Chinese population, we performed a genome-wide association study on 885 severe or critical COVID-19 patients (cases) and 546 mild or moderate patients (controls) from two hospitals, Huoshenshan and Union hospitals at Wuhan city in China. We identified two loci on chromosome 11q23.3 and 11q14.2, which are significantly associated with the COVID-19 severity in the meta-analyses of the two cohorts (index rs1712779: odds ratio [OR] = 0.49; 95% confidence interval [CI], 0.38-0.63 for T allele; P = 1.38 × 10-8; and index rs10831496: OR = 1.66; 95% CI, 1.38-1.98 for A allele; P = 4.04 × 10-8, respectively). The results for rs1712779 were validated in other two small COVID-19 cohorts in the Asian populations (P = 0.029 and 0.031, respectively). Furthermore, we identified significant eQTL associations for REXO2, C11orf71, NNMT, and CADM1 at 11q23.3, and CTSC at 11q14.2, respectively. In conclusion, our findings highlight two loci at 11q23.3 and 11q14.2 conferring susceptibility to the severity of COVID-19, which might provide novel insights into the pathogenesis and clinical treatment of this disease.

6.
Nucleic Acids Res ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570230

RESUMO

To date, only some cancer patients can benefit from chemotherapy and targeted therapy. Drug resistance continues to be a major and challenging problem facing current cancer research. Rapidly accumulated patient-derived clinical transcriptomic data with cancer drug response bring opportunities for exploring molecular determinants of drug response, but meanwhile pose challenges for data management, integration, and reuse. Here we present the Cancer Treatment Response gene signature DataBase (CTR-DB, http://ctrdb.ncpsb.org.cn/), a unique database for basic and clinical researchers to access, integrate, and reuse clinical transcriptomes with cancer drug response. CTR-DB has collected and uniformly reprocessed 83 patient-derived pre-treatment transcriptomic source datasets with manually curated cancer drug response information, involving 28 histological cancer types, 123 drugs, and 5139 patient samples. These data are browsable, searchable, and downloadable. Moreover, CTR-DB supports single-dataset exploration (including differential gene expression, receiver operating characteristic curve, functional enrichment, sensitizing drug search, and tumor microenvironment analyses), and multiple-dataset combination and comparison, as well as biomarker validation function, which provide insights into the drug resistance mechanism, predictive biomarker discovery and validation, drug combination, and resistance mechanism heterogeneity.

8.
Signal Transduct Target Ther ; 6(1): 304, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404759

RESUMO

A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Proteínas não Estruturais Virais/imunologia , COVID-19/mortalidade , Estado Terminal , Intervalo Livre de Doença , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Análise Serial de Proteínas , Taxa de Sobrevida
9.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433556

RESUMO

Hepatocellular carcinomas (HCCs) are characterized by frequent somatic genomic copy number alterations (CNAs), with most of them biologically unexplored. Here, we performed integrative analyses combining CNAs with the transcriptomic data to reveal the cis- and trans-effects of CNAs in HCC. We identified recurrent genomic gains of chromosome 8q, which exhibit strong trans-effects and are broadly associated with ribosome biogenesis activity. Furthermore, 8q gain-driven overexpression of ribosome biogenesis regulator (RRS1) promotes growth of HCC cells in vitro and in vivo. Mechanistically, RRS1 attenuates ribosomal stress through retaining RPL11 in the nucleolus, which, in turn, potentiates MDM2-mediated ubiquitination and degradation of p53. Clinically, higher RRS1 expression levels predict poor clinical outcomes for patients with HCC, especially in those with intact p53 Our findings established that the chromosome 8q oncogene RRS1 promotes HCC development through attenuating the RPL11-MDM2-p53 pathway and provided new potential targets for treatment of this malignancy.

10.
Mol Cell ; 81(19): 4076-4090.e8, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375582

RESUMO

KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.

11.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2393-2404, 2021 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-34327904

RESUMO

Cancers have been widely recognized as highly heterogeneous diseases, and early diagnosis and prognosis of cancer types have become the focus of cancer research. In the era of big data, efficient mining of massive biomedical data has become a grand challenge for bioinformatics research. As a typical neural network model, the autoencoder is able to efficiently learn the features of input data by unsupervised training method and further help integrate and mine the biological data. In this article, the primary structure and workflow of the autoencoder model are introduced, followed by summarizing the advances of the autoencoder model in cancer informatics using various types of biomedical data. Finally, the challenges and perspectives of the autoencoder model are discussed.


Assuntos
Neoplasias , Redes Neurais de Computação , Algoritmos , Humanos , Informática , Neoplasias/diagnóstico
12.
Artigo em Inglês | MEDLINE | ID: mdl-34314873

RESUMO

Genome-wide physical protein-protein interaction (PPI) mapping remains a major challenge for current technologies. Here, we report a high-efficiency yeast bimolecular fluorescence complementation method coupled with next-generation DNA sequencing (BiFC-seq) for interactome mapping. We applied this technique to systematically investigate an intraviral network of the Ebola virus (EBOV). Two-thirds (9/13) of known interactions of EBOV were recaptured, and five novel interactions were discovered. Next, we used the BiFC-seq method to map the interactome of the tumor protein p53. We identified 97 interactors of p53, more than three-quarters of which were novel. Furthermore, in a more complex background, we screened potential interactors by pooling two BiFC libraries together and revealed a network of 229 interactions among 205 proteins. These results show that BiFC-seq is a highly sensitive, rapid, and economical method for genome-wide interactome mapping.

13.
Nucleic Acids Res ; 49(18): e108, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313778

RESUMO

Time-series gene expression profiles are the primary source of information on complicated biological processes; however, capturing dynamic regulatory events from such data is challenging. Herein, we present a novel analytic tool, time-series miner (TSMiner), that can construct time-specific regulatory networks from time-series expression profiles using two groups of genes: (i) genes encoding transcription factors (TFs) that are activated or repressed at a specific time and (ii) genes associated with biological pathways showing significant mutual interactions with these TFs. Compared with existing methods, TSMiner demonstrated superior sensitivity and accuracy. Additionally, the application of TSMiner to a time-course RNA-seq dataset associated with mouse liver regeneration (LR) identified 389 transcriptional activators and 49 transcriptional repressors that were either activated or repressed across the LR process. TSMiner also predicted 109 and 47 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly interacting with the transcriptional activators and repressors, respectively. These findings revealed the temporal dynamics of multiple critical LR-related biological processes, including cell proliferation, metabolism and the immune response. The series of evaluations and experiments demonstrated that TSMiner provides highly reliable predictions and increases the understanding of rapidly accumulating time-series omics data.

14.
Mol Cell ; 81(15): 3187-3204.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157307

RESUMO

OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.


Assuntos
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidases/genética , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animais , Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Mutantes , Mutação , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditária , Ubiquitina-Proteína Ligases/metabolismo
15.
Mol Cell ; 81(9): 1890-1904.e7, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33657401

RESUMO

O-linked ß-N-acetyl glucosamine (O-GlcNAc) is attached to proteins under glucose-replete conditions; this posttranslational modification results in molecular and physiological changes that affect cell fate. Here we show that posttranslational modification of serine/arginine-rich protein kinase 2 (SRPK2) by O-GlcNAc regulates de novo lipogenesis by regulating pre-mRNA splicing. We found that O-GlcNAc transferase O-GlcNAcylated SRPK2 at a nuclear localization signal (NLS), which triggers binding of SRPK2 to importin α. Consequently, O-GlcNAcylated SRPK2 was imported into the nucleus, where it phosphorylated serine/arginine-rich proteins and promoted splicing of lipogenic pre-mRNAs. We determined that protein nuclear import by O-GlcNAcylation-dependent binding of cargo protein to importin α might be a general mechanism in cells. This work reveals a role of O-GlcNAc in posttranscriptional regulation of de novo lipogenesis, and our findings indicate that importin α is a "reader" of an O-GlcNAcylated NLS.


Assuntos
Neoplasias da Mama/metabolismo , Glucose/metabolismo , Lipogênese , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias da Mama/genética , Proliferação de Células , Feminino , Glicosilação , Células HEK293 , Humanos , Células MCF-7 , Camundongos Nus , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Carga Tumoral , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
16.
J Biol Chem ; 296: 100348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524398

RESUMO

Sterol homeostasis is tightly controlled by molecules that are highly conserved from yeast to humans, the dysregulation of which plays critical roles in the development of antifungal resistance and various cardiovascular diseases. Previous studies have shown that sterol homeostasis is regulated by the ubiquitin-proteasome system. Two E3 ubiquitin ligases, Hrd1 and Doa10, are known to mediate the proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase Hmg2 and squalene epoxidase Erg1 with accumulation of the toxic sterols in cells, but the deubiquitinases (DUBs) involved are unclear. Here, we screened for DUBs responsible for sterol homeostasis using yeast strains from a DUB-deletion library. The defective growth observed in ubp3-deleted (ubp3Δ) yeast upon fluconazole treatment suggests that lack of Ubp3 disrupts sterol homeostasis. Deep-coverage quantitative proteomics reveals that ergosterol biosynthesis is rerouted into a sterol pathway that generates toxic products in the absence of Ubp3. Further genetic and biochemical analysis indicated that Ubp3 enhances the proteasome's ability to degrade the ergosterol biosynthetic enzymes Erg1 and Erg3. The retardation of ergosterol enzyme degradation in the ubp3Δ strain resulted in the severe accumulation of the intermediate lanosterol and a branched toxic sterol, and ultimately disrupted sterol homeostasis and led to the fluconazole susceptibility. Our findings uncover a role for Ubp3 in sterol homeostasis and highlight its potential as a new antifungal target.


Assuntos
Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Homeostase , Proteólise , Saccharomyces cerevisiae/metabolismo
17.
Sci Rep ; 11(1): 2985, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542394

RESUMO

Interestingly, some protein domains are intrinsically disordered (abbreviated as IDD), and the disorder degree of same domains may differ in different contexts. However, the evolutionary causes and biological significance of these phenomena are unclear. Here, we address these issues by genome-wide analyses of the evolutionary and functional features of IDDs in 1,870 species across the three superkingdoms. As the result, there is a significant positive correlation between the proportion of IDDs and organism complexity with some interesting exceptions. These phenomena may be due to the high disorder of clade-specific domains and the different disorder degrees of the domains shared in different clades. The functions of IDDs are clade-specific and the higher proportion of post-translational modification sites may contribute to their complex functions. Compared with metazoans, fungi have more IDDs with a consecutive disorder region but a low disorder ratio, which reflects their different functional requirements. As for disorder variation, it's greater for domains among different proteins than those within the same proteins. Some clade-specific 'no-variation' or 'high-variation' domains are involved in clade-specific functions. In sum, intrinsic domain disorder is related to both the organism complexity and clade-specific functions. These results deepen the understanding of the evolution and function of IDDs.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica , Domínios Proteicos/genética , Proteínas/genética , Sequência de Aminoácidos/genética , Animais , Biologia Computacional , Evolução Molecular , Fungos/química , Fungos/genética , Genoma/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura
18.
BMC Mol Cell Biol ; 22(1): 7, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482715

RESUMO

BACKGROUND: One striking feature of the large KRAB domain-containing zinc finger protein (KZFP) family is its rapid evolution, leading to hundreds of member genes with various origination time in a certain mammalian genome. However, a comprehensive genome-wide and across-taxa analysis of the structural and expressional features of KZFPs with different origination time is lacking. This type of analysis will provide valuable clues about the functional characteristics of this special family. RESULTS: In this study, we found several conserved paradoxical phenomena about this issue. 1) Ordinary young domains/proteins tend to be disordered, but most of KRAB domains are completely structured in 64 representative species across the superclass of Sarcopterygii and most of KZFPs are also highly structured, indicating their rigid and unique structural and functional characteristics; as exceptions, old-zinc-finger-containing KZFPs have relatively disordered KRAB domains and linker regions, contributing to diverse interacting partners and functions. 2) In general, young or highly structured proteins tend to be spatiotemporal specific and have low abundance. However, by integrated analysis of 29 RNA-seq datasets, including 725 samples across early embryonic development, embryonic stem cell differentiation, embryonic and adult organs, tissues in 7 mammals, we found that KZFPs tend to express ubiquitously with medium abundance regardless of evolutionary age and structural disorder degree, indicating the wide functional requirements of KZFPs in various states. 3) Clustering and correlation analysis reveal that there are differential expression patterns across different spatiotemporal states, suggesting the specific-high-expression KZFPs may play important roles in the corresponding states. In particular, part of young-zinc-finger-containing KZFPs are highly expressed in early embryonic development and ESCs differentiation into endoderm or mesoderm. Co-expression analysis revealed that young-zinc-finger-containing KZFPs are significantly enriched in five co-expression modules. Among them, one module, including 13 young-zinc-finger-containing KZFPs, showed an 'early-high and late-low' expression pattern. Further functional analysis revealed that they may function in early embryonic development and ESC differentiation via participating in cell cycle related processes. CONCLUSIONS: This study shows the conserved and special structural, expressional features of KZFPs, providing new clues about their functional characteristics and potential causes of their rapid evolution.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Dedos de Zinco , Animais , Mamíferos/genética , Filogenia , Domínios Proteicos , Proteínas Repressoras/metabolismo
19.
Theranostics ; 11(1): 361-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391480

RESUMO

Rationale: As the central hallmark of liver fibrosis, transdifferentiation of hepatic stellate cells (HSCs), the predominant contributor to fibrogenic hepatic myofibroblast responsible for extracellular matrix (ECM) deposition, is characterized with transcriptional and epigenetic remodeling. We aimed to characterize the roles of H3K27 methyltransferase EZH2 and demethylase JMJD3 and identify their effective pathways and novel target genes in HSCs activation and liver fibrosis. Methods: In primary HSCs, we analyzed effects of pharmacological inhibitions and genetic manipulations of EZH2 and JMJD3 on HSCs activation. In HSCs cell lines, we evaluated effects of EZH2 inhibition by DZNep on proliferation, cell cycling, senescence and apoptosis. In CCl4 and BDL murine models of liver fibrosis, we assessed in vivo effects of DZNep administration and Ezh2 silencing. We profiled rat primary HSCs transcriptomes with RNA-seq, screened the pathways and genes associated with DZNep treatment, analyzed EZH2 and JMJD3 regulation towards target genes by ChIP-qPCR. Results: EZH2 inhibition by DZNep resulted in retarded growth, lowered cell viability, cell cycle arrest in S and G2 phases, strengthened senescence, and enhanced apoptosis of HSCs, decreased hepatic collagen deposition and rescued the elevated serum ALT and AST activities of diseased mice, and downregulated cellular and hepatic expressions of H3K27me3, EZH2, α-SMA and COL1A. Ezh2 silencing by RNA interference in vitro and in vivo showed similar effects. JMJD3 inhibition by GSK-J4 and overexpression of wild-type but not mutant Jmjd3 enhanced or repressed HSCs activation respectively. EZH2 inhibition by DZNep transcriptionally inactivated TGF-ß1 pathway, cell cycle pathways and vast ECM components in primary HSCs. EZH2 inhibition decreased H3K27me3 recruitment at target genes encoding TGF-ß1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, and increased their expressions, while Jmjd3 overexpression manifested alike effects. Conclusions: EZH2 and JMJD3 antagonistically modulate HSCs activation. The therapeutic effects of DZNep as epigenetic drug in liver fibrosis are associated with the regulation of EZH2 towards direct target genes encoding TGF-ß1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, which are also regulated by JMJD3. Our present study provides new mechanistic insight into the epigenetic modulation of EZH2 and JMJD3 in HSCs biology and hepatic fibrogenesis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Estreladas do Fígado/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Apoptose/genética , Benzazepinas/farmacologia , Ductos Biliares/cirurgia , Tetracloreto de Carbono/toxicidade , Ciclo Celular , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Interleucina-10/genética , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Ligadura , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Piridonas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...