Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(2): 960-963, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31913025

RESUMO

Treatment of [Ir(PPh3)3Cl] with 2-[5-(pyridin-2-yl)-1H-pyrrol-2-yl]pyridine (Hdpp) in refluxing toluene affords an unexpected pyrrole-metalated iridium(III) hydride complex, [Ir(K2C,N-dpp)(H)(Cl)(PPh3)2] (1), via Cpyrrole-H activation, while the presence of the base KOtBu as the deprotonation reagent produces a pyridine-metalated iridium(III) hydride complex, [Ir(K3C,N,N-dpp)(H)(PPh3)2] (2), via Cpyridine-H activation. Treatment of [Ir(PPh3)3Cl] prepared by a convenient method with Hdpp in the presence of KOtBu under the refluxing mixture solvent toluene/methanol (2:1, v/v) generates the N,N-chelating complex [Ir(K2N,N-dpp)(H)(Cl)(PPh3)2] (3) together with 1 and the N,N-chelating dihydride complex [Ir(K2N,N-dpp)(H)2(PPh3)2] (4). Complex 4 is also readily produced by the reaction of [Ir(PPh3)3Cl] and Hdpp in the presence of KOtBu under refluxing methanol or by the reaction of IrCl3 and PPh3 in refluxing 2-ethoxyethanol. Complexes 1-4 are fully characterized by NMR, IR, and UV-vis spectroscopy and X-ray diffraction analysis. The dpp-/dpp2- ligand shows rich coordination capability, of which pyridine- and pyrrole-cyclometalated coordination modes are first reported. The formation of structural isomers 1 and 3 involved the selective activation of the C-H and N-H bonds of Hdpp is rationalized by theoretical calculations.

2.
Chem Commun (Camb) ; 55(97): 14594-14597, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31742267

RESUMO

Newly designed ruthenium(ii) complexes are reported which contain a pyridylpyrrole ligand featuring fast-responsive and reversible proton storage/release on the pyrrole group. The protonated pyrrolium acts as an acidic initiator and is capable of triggering the polymerization of 2,2-dimethyloxirane.

3.
Chem Asian J ; 14(21): 3845-3849, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31562684

RESUMO

A novel oxygen-containing dimethoxycarbonyl diaminobistetrazole (1) was synthesized via a facile strategy. The sodium salt (2) based on this ligand was prepared and these two compounds were fully characterized by using elemental analysis, IR and mass spectrometry and single-crystal X-ray diffraction. Their density, heats of formation, thermal stability and sensitivity, as well as the energetic properties from EXPLO5 code were investigated. These newly synthesized compounds possess high positive heats of formation and detonation heats. Compound 1 exhibits good detonation performance and acceptable stability, and might be a potential eco-friendly alternative of lead azide. The present study contributes to the development of tetrazole derivatives as new energetic materials.

4.
J Phys Chem A ; 122(12): 3320-3327, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29519126

RESUMO

The density functional theory method was employed to calculate three-dimensional structures for a series of novel explosophores. The design of new molecules (DA1-DA12) was based on the bridge-ring structures that could be formed via Diels-Alder (DA) reaction of selected nitrogen-rich dienes and tetranitroethylene dienophile. The feasibility of the proposed DA reactions was predicted on the basis of the molecular orbital theory. The strong interactions between the HOMO of dienes, with electron-donating groups (Diene2, Diene6, and Diene8), and the LUMO of tetranitroethylene dienophile suggested thermodynamically favorable formation of the desired DA reaction products. In addition to molecular structures of the explored DA compounds, their physicochemical and energetic properties were also calculated in detail. Due to compact bridge-ring structures, new energetic molecules have highly positive heats of formation (up to 1124.90 kJ·mol-1) and high densities (up to 2.04 g·cm-3). Also, as a result of all-right ratios of nitrogen and oxygen, most of the new compounds possess high detonation velocities (8.28-10.02 km·s-1) and high detonation pressures (30.87-47.83 GPa). Energetic compounds DA1, DA4, and DA12 exhibit a superior detonation performance over widely used HMX explosive, and DA5, DA7, and DA10 could be comparable to the state-of-the-art CL-20 and ONC explosives. Our proposed designs and synthetic methodology should provide a platform for the development of novel energetic materials with superior performance.

5.
Chemistry ; 23(46): 11159-11168, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28664635

RESUMO

A series of nitrogen-rich energetic salts of 1,1'-dinitramino-5,5'-bistetrazolate (DNABT) guanidinium (1), aminoguanidinium (2), diaminoguanidinium (3), triaminoguanidinium (4), diaminouronium (5), 3,4-diamino-1,2,4-triazolium (6), and ethylenediammonium (7) was synthesized by a metathesis strategy and characterized by elemental analysis, mass spectrometry, and IR spectroscopy as well as single-crystal X-ray diffraction and differential scanning calorimetry (DSC). The natural bond orbitals (NBOs) and electrostatic potentials (ESPs) were further computed for a better understanding of the structures of the DNABT molecule. The heats of formation were calculated based on the Born-Haber energy cycle. The detonation parameters were evaluated by using the EXPLO5 program, and the sensitivities were measured according to BAM standers. These new salts exhibit highly positive heats of formation (407.0-1377.9 kJ mol-1 ) and good thermal stabilities (180-211 °C). Most of these compounds possess detonation velocities comparable to RDX and acceptable detonation pressures. The high volumes of explosion gases of the salts 3 and 4 (921 and 933 L kg-1 , respectively) further support their power as explosives. The enhancing performances, the fact of being free of metals, and the more moderate sensitivities than K2 DNABT, suggest that the salts 4 (D=8851 m s-1 , P=29.0 GPa), 5 (D=9053 m s-1 , P=32.3 GPa), and 6 (D=8835 m s-1 , P=30.2 GPa) might be potential environmentally friendly energetic materials.

6.
Dalton Trans ; 46(26): 8422-8430, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28621786

RESUMO

Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm-3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.

7.
Chemistry ; 22(23): 7670-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061423

RESUMO

Energetic materials (explosives, propellants, and pyrotechnics) are used extensively for both civilian and military applications and the development of such materials, particularly in the case of energetic salts, is subject to continuous research efforts all over the world. This Review concerns recent advances in the syntheses, properties, and potential applications of ionic salts based on tetrazole N-oxide. Most of these salts exhibit excellent characteristics and can be classified as a new family of highly energetic materials with increased density and performance, alongside decreased mechanical sensitivity. Additionally, novel tetrazole N-oxide salts are proposed based on a diverse array of functional groups and ions pairs, which may be promising candidates for new energetic materials.

8.
J Org Chem ; 80(11): 5643-51, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25927415

RESUMO

We investigated 5,8-dinitro-5,6,7,8-tetrahydrotetrazolo[1,5-b][1,2,4]triazine (short for DNTzTr (1)) using various ab initio quantum chemistry methods. We proposed an additional three novel polynitro-substituted tetrazolotriazine-based compounds with exceptional performance, including 5,8-dinitro-5,6-dioxotetrazolo[1,5-b][1,2,4]triazine, DNOTzTr (2), 4,5,9,10-tetranitro[1,2,4,5]tetrazolo[3,4-b][1,2,4,5]tetrazolo[3',4':5,6]triazino[2,3-e]triazine, TNTzTr (3), and 4,5,6,10,11,12-hexanitro-bis[1,2,4,5]tetrazolo[3',4':5,6]triazino[2,3-b:2',3'-e]triazine, HNBTzTr (4). The optimized structure, electronic density, natural bond orbital (NBO) charges and HOMO-LUMO orbitals, electrostatic potential on surface of molecule, IR- and NMR-predicted spectra, as well as thermochemical parameters were calculated with the B3LYP/6-311+G(2d) level of theory. Critical parameters such as density, enthalpy of formation (EOF), and detonation performance have also been predicted. Characters with positive EOF (1386.00 and 1625.31 kJ/mol), high density (over 2.00 g/cm(3)), outstanding detonation properties (D = 9.82 km/s, P = 45.45 GPa; D = 9.94 km/s, P = 47.30 GPa), the perfect oxygen balance set to zero, and acceptable impact sensitivity led novel compounds 3 and 4 to be very promising energetic materials. This work provides the theoretical molecule design and a reasonable synthesis path for further experimental synthesis and testing.

9.
Phys Chem Chem Phys ; 17(8): 5840-8, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25631492

RESUMO

Two novel compounds 5-(dinitromethylene)-1,4-dinitramino-tetrazole (DNAT) and 1,1'-dinitro-4,4'-diamino-5,5'-bitetrazole (DNABT) were suggested to be potential candidates of high energy density materials (HEDMs). The optimized geometry, NBO charges and electronic density, HOMO-LUMO, electrostatic potential on the surface of molecules, the IR spectrum and thermochemical parameters were calculated for inspecting the electronic structure properties at B3LYP/6-311++G** level of theory. Meanwhile, the solid states of DNAT and DNABT were studied using the crystal packing models by the plane-wave periodic local-density approximation density functional theory. Four stable polymorphous cells have been found including P212121, P21/c, P1̄ and Pbca, assigned to the orthorhombic, monoclinic and triclinic lattice systems. In addition, properties such as density, enthalpy of formation and detonation performance have also been predicted. As a result, the detonation velocity and pressure of two compounds are found to be very remarkable (DNAT: D = 9.17 km s(-1), P = 39.23 GPa; DNABT: D = 9.53 km s(-1), P = 40.92 GPa). Considering the tetrazole rings with energetic groups and the insensitive fragment of FOX-7, high positive heat of formation (583.50 kJ mol(-1) and 1081.39 kJ mol(-1)) and eminent performance render DNAT and DNABT to be very promising powerful energetically insensitive compounds. This work provides theoretical support for further experimental synthesis.

10.
Phys Chem Chem Phys ; 16(44): 24282-91, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25298001

RESUMO

The thermal behavior, decomposition kinetics and mechanisms of 1-amino-1-(tetrazol-5-yldiazenyl) guanidine (tetrazene) and 2-(tetrazol-5-yldiazenyl) guanidine (MTX-1) have been investigated using DSC, TG techniques, and quantum chemical calculations. It has been found that MTX-1 is much more stable than tetrazene and MTX-1, and both of them decompose in three steps with different kinetic parameters. Tetrazene is melted-dehydrated at 128.4 °C with a heat absorption of 50 J g(-1) and then it starts to decompose at around 118.6 °C with a peak temperature of 126.3 °C covered by a heat release of 1037 J g(-1) at a heating rate of 1.0 °C min(-1), while MTX-1 starts at 167.7 °C with a main peak of 191.1 °C covered by a heat change of 1829 J g(-1) under the same conditions. The activation energy is almost the same for their first decomposition steps (225 kJ mol(-1)), which are controlled by a three dimensional nucleation and growth model (A3). The mechanisms of the rate-limiting steps are supported by quantum chemical calculations. They could undergo a similar rate-limiting chemical process producing 1H-tetrazole and N2 for both cases, while the former also produces aminocyanamide and the latter produces cyanamide.

11.
J Mol Model ; 20(10): 2457, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25241162

RESUMO

The tautomerization pathways and kinetics of 1,5-diaminotetrazole (DAT) have been investigated by means of second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory, with single and double excitations including perturbative corrections for triple excitations (CCSD(T)). Five possible tautomers, namely 4-hydro-1-amino-5-imino-tetrazole (a), 2,5-diamino-tetrazole (b), 1,5-diamino-tetrazole (c), 2-hydro-1-imino-5-amino-tetrazole (d), and 2,4-dihydro-1,5-diimino-tetrazole (e) were identified. The structures of the reactants, transition states, and products along with the tautomerism pathways were optimized by the MP2 method using the 6-311G** basis set, and the energies were refined using CCSD(T)/6-311G**. The minimum-energy path (MEP) information for DAT was obtained at the CCSD(T)/6-311G**//MP2/6-311G** level of theory. Therein, reaction 2 (c → b) is an amino-shift reaction, while reaction 1 (c → a), reaction 3 (c → d), reaction 4 (a → e), and reaction 5 (d → e) are reactions of hydrogen-shift tautomerization. The calculated results show that 2,5-diaminotetrazole (b) with the minimum energy (taking c as a standard) among five tautomers, is the energetically preferred tautomer of DAT in the gas phase. In addition, the energy barrier of reaction 2 is 71.65 kcal · mol(-1) in the gas phase, while reaction 1 takes place more easily with an activation barrier of 61.53 kcal · mol(-1) also as compared to 63.71 kcal · mol(-1) in reaction 3. Moreover, the tautomerization of reaction 4 requires the largest energy barrier of 83.29 kcal · mol(-1), which is obviously bigger than reaction 5 with a value of 73.78 kcal · mol(-1). Thus, the hydrogen-shift of c to a is the easiest transformation, while the tautomerization of a to e is the hardest one. Again, the rate constants of tautomerization have been obtained by TST, TST/Eckart, CVT, CVT/SCT, and CVT/ZCT methods in the range 200-2500 K, and analysis indicated that variational effects are small over the whole temperature range, while tunneling effects are significant in the lower temperature range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA