Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
J Control Release ; 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965503

RESUMO

Rheumatoid arthritis (RA) is characterized by the outbreak of inflammation. Neutrophils, the main culprit of the outbreak of inflammation, are the first inflammatory cells to be recruited to inflamed joints and facilitate the recruitment of themselves by stimulating the release of chemokines. Here, based on neutrophils, a novel anti-inflammatory "shield and sword soldiers" strategy is established with LMWH-TOS nanoparticles (LT NPs). The hydrophilic fragment low molecular weight heparin (LMWH) acts as a shield which block the transvascular movement of neutrophils through inhibiting the adhesion cascade by binding to P-selectin on inflamed endothelium. Synergistically, MMP-9, which is secreted by the recruited neutrophils and degrade the main component of articular cartilage, is reduced by the hydrophobic fragment d-α-tocopheryl succinate (TOS), functioning as a sword. In collagen-induced arthritis (CIA) mouse model, LT NPs show significant targeting effect, and exhibit prominent therapeutic efficacy after enveloping the first-line anti-RA drug methotrexate. Our work proves that the multi-stage manipulation of neutrophils is feasible and effective, providing a new concept for RA treatment.

2.
Mol Med Rep ; 23(6)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33846800

RESUMO

Tryptophan 2,3­dioxygenase (TDO2) is a key rate­limiting enzyme in the kynurenine pathway and promotes tumor growth and escape from immune surveillance in different types of cancer. The present study aimed to investigate whether TDO2 serves a role in the development of ovarian cancer. Reverse transcription­quantitative PCR and western blotting were used to detect the expression of TDO2 in different cell lines. The effects of TDO2 overexpression, TDO2 knockdown and TDO2 inhibitor on ovarian cancer cell proliferation, migration and invasion were determined by MTS, colony formation and Transwell assays. The expression of TDO2 in ovarian cancer tissues, normal ovarian tissues and fallopian tube tissues were analyzed using the gene expression data from The Cancer Genome Atlas and Genotype­Tissue Expression project. Immune cell infiltration in cancer tissues was evaluated using the single sample gene set enrichment analysis algorithm. The present study found that RasV12­mediated oncogenic transformation was accompanied by the upregulation of TDO2. In addition, it was demonstrated that TDO2 was upregulated in ovarian cancer tissues compared with normal ovarian tissues. TDO2 overexpression promoted proliferation, migration and invasion of ovarian cancer cells, whereas TDO2 knockdown repressed these phenotypes. Treatment with LM10, a TDO2 inhibitor, also repressed the proliferation, migration and invasion of ovarian cancer cells. The present study indicated that TDO2 can be used as a new target for the treatment of ovarian cancer.

3.
Acta Biomater ; 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33882357

RESUMO

The dilemma of tumor accumulation and deep penetration has always been a barrier in antitumor therapy. Stimuli-responsive size changeable drug delivery systems provide possible solutions. Nevertheless, the low size-shrinkage efficiency limited the antitumor effects. In this study, an instant pH-responsive size shrinkable nanoassemblies named self-aggregated DOX@HA-CD (SA-DOX@HA-CD) was formulated using small-sized hyaluronic acid modified carbon dots (HA-CD) as monomers, which could self-aggregate into raspberry-like structure via hydrophobicity force in neutral pH and rapidly disassemble into shotgun-like DOX-loaded CD monomer in simulated tumor microenvironment (pH 6.5), owing to the transformation in electrical charge and hydrophobicity/hydrophilicity of this system. The transmission electron microscopy showed that the clustered SA-DOX@HA-CD had a diameter of ∼ 150 nm, and thoroughly disassembled into ∼30 nm nanoparticles in response to acidic environment. The disassemble efficiency was approximately 100%. Attributed to this property, SA-DOX@HA-CD led to enhanced cellular internalization and accumulation in 4T1 cells in simulated tumor microenvironment, as well as deep tumor penetration in 3D tumor spheroid model. Besides, the imine bond between DOX and HA-CD endowed DOX with pH-responsive release profile in the acidic lysosome environment. Furthermore, in the orthotopic 4T1 tumor-bearing mouse model, SA-DOX@HA-CD demonstrated higher tumor accumulation than non-aggregated DOX-HA-CD. Meanwhile, in response to the acid tumor microenvironment, the dissociated DOX-HA achieved deep tumor penetration, which consequently resulted in 2.5-fold higher antitumor efficiency. The formulation of self-aggregated SA-DOX@HA-CD provides a simple and effective alternative to prepare pH-responsive size-shrinkable nanodrug delivery systems. Statement of Significance: The heterogeneity of tumor vasculature and the high tumor interstitial pressure lead to the barriers in tumor accumulation and deep penetration, which calls for opposite properties (e.g. size) of drug delivery systems. To address this dilemma, various size changeable nanoparticles have been developed utilizing special features of tumor microenvironment, such as pH, enzyme and reactive oxygen species. Nevertheless, the current strategies face the problems of incomplete hydrolysis of chemical bonds or insufficient enzyme degradation, which result in only partial size shrinkage, hindering the tumor deep penetration effects. Here we developed a self-assembled nanocluster, which could respond to acidic pH rapidly and thoroughly disassemble into small nanodots due to the alteration of hydrophobicity/hydrophilicity/charge, leading to approximately 100% dissociation. This strategy provides a new concept for design of size changeable drug delivery systems.

4.
ACS Appl Mater Interfaces ; 13(15): 18033-18046, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834754

RESUMO

Natural killer (NK) cell-based immunotherapy presents a promising antitumor strategy and holds potential for combination with chemotherapy. However, the suppressed NK cell activity and poor tumor retention of therapeutics hinder the efficacy. To activate NK cell-based immuno-chemotherapy and enhance the tumor retention, we proposed a pH-responsive self-aggregated nanoparticle for the codelivery of chemotherapeutic doxorubicin (DOX) and the transforming growth factor-ß (TGF-ß)/Smad3 signaling pathway inhibitor SIS3. Polycaprolactone-poly(ethylene glycol) (PCL-PEG2000) micelles modified with dibenzylcyclooctyne (DBCO) or azido (N3) and coated with acid-cleavable PEG5000 were established. This nanoplatform, namely, M-DN@DOX/SIS3, could remain well dispersed in the neutral systemic circulation, while quickly respond to the acidic tumor microenvironment and intracellular lysosomes, triggering copper-free click reaction-mediated aggregation, leading to the increased tumor accumulation and reduced cellular efflux. In addition, the combination of DOX with SIS3 facilitated by the aggregation strategy resulted in potent inhibition of melanoma tumor growth and significantly increased NK cells, NK cell cytokines, and antitumor T cells in the tumor. Taken together, our study offered a new concept of applying copper-free click chemistry to achieve nanoparticle aggregation and enhance tumor retention, as well as a promising new combined tumor treatment approach of chemotherapy and immunotherapy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33817860

RESUMO

This study aimed to investigate the protective effects and underlying mechanism of seaweed polysaccharide (SWP) on intestinal epithelial barrier dysfunction induced by E. coli in an IPEC-J2 model. A preliminary study was done to screen optimum SWP concentrations by cell viability, cytotoxicity, apoptosis and proliferation evaluation. The regular study was conducted to evaluate the protective effects of SWP against E. coli challenge via the analysis of transepithelial electrical resistance (TEER), tight junction proteins, NF-κB signalling pathway, proinflammatory cytokines and the E. coli adhesion and invasion. Our results show that 4 h E. coli challenge down-regulated tight junction proteins expression, decreased TEER, activated NF-κB signalling pathway and increased proinflammatory response, which indicates that the E. coli infection model was well-established. Pre-treatment with 240 µg/ml SWP for 24 h alleviated the 4 h E. coli -induced intestinal epithelial barrier dysfunction, as evidenced by the up-regulated expression of Occludin, Claudin-1 and ZO-1 at both mRNA and protein level and the increased TEER of IPEC-J2 cells. Pre-incubation with 240 µg/ml SWP for 24 h inhibited the activation of the NF-κB signalling pathway by 4 h E. coli challenge, including the decreased mRNA expression of TLR-4, MyD88, IκBα, p-65, as well as the reduced ratio of protein expression of p-p65/p65. Also, pre-treatment with 240 µg/ml SWP for 24 h decreased proinflammatory response (IL-6 and TNF-α) induced by 4 h E. coli challenge and decreased the E. coli adhesion and invasion. In conclusion, SWP mitigated intestinal barrier dysfunction caused by E. coli through NF-κB pathway in IPEC-J2 cells and 240 µg/ml SWP exhibited better effect. Our results also provide a fundamental basis for SWP in reducing post-weaning diarrhoea of weaned piglets, especially under E. coli -infected or in-feed antibiotic-free conditions.

6.
Theranostics ; 11(12): 5759-5777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897880

RESUMO

Background: Since metastasis remains the main reason for HCC-associated death, a better understanding of molecular mechanism underlying HCC metastasis is urgently needed. Here, we elucidated the role of Homeobox B5 (HOXB5), a member of the HOX transcriptional factor family, in promoting HCC metastasis. Method: The expression of HOXB5 and its functional targets fibroblast growth factor receptor 4 (FGFR4) and C-X-C motif chemokine ligand 1 (CXCL1) were detected by immunohistochemistry. Luciferase reporter and chromatin immunoprecipitation assays were performed to measure the transcriptional regulation of target genes by HOXB5. The effects of FGFR4 and CXCL1 on HOXB5-mediated metastasis were analyzed by an orthotopic metastasis model. Results: Elevated expression of HOXB5 had a positive correlation with poor tumour differentiation, higher TNM stage, and indicated unfavorable prognosis. Overexpression of HOXB5 promoted HCC metastasis through transactivating FGFR4 and CXCL1 expression, whereas knockdown of FGFR4 and CXCL1 decreased HOXB5-enhanced HCC metastasis. Moreover, HOXB5 overexpression in HCC cells promoted myeloid derived suppressor cells (MDSCs) infiltration through CXCL1/CXCR2 axis. Either depletion of MDSCs by anti-Gr1 or blocking CXCL1-CXCR2 axis by CXCR2 inhibitor impaired HOXB5-mediated HCC metastasis. In addition, fibroblast growth factor 19 (FGF19) contributed to the HOXB5 upregulation through PI3K/AKT/HIF1α pathway. Overexpression of FGF15 (an analog of FGF19 in mouse) promoted HCC metastasis, whereas knockdown of HOXB5 significantly inhibited FGF15-enhanced HCC metastasis in immunocompetent mice. HOXB5 expression was positively associated with CXCL1 expression and intratumoral MDSCs accumulation in human HCC tissues. Patients who co-expressed HOXB5/CXCL1 or HOXB5/CD11b exhibited the worst prognosis. Furthermore, the combination of FGFR4 inhibitor BLU-554 and CXCR2 inhibitor SB265610 dramatically decreased HOXB5-mediated HCC metastasis. Conclusion: HOXB5 was a potential prognostic biomarker in HCC patients and targeting this loop may provide a promising treatment strategy for the inhibition of HOXB5-mediated HCC metastasis.

7.
Acta Ophthalmol ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33665973

RESUMO

PURPOSE: To evaluate the influence of 2.2 mm clear corneal incision (CCI) features in surgically induced astigmatism (SIA) and higher-order aberrations (HOAs) after cataract surgery. METHODS: Right eyes of 92 subjects receiving 2.2 mm incision cataract surgery were involved. A total of 38 eyes were categorized as the intact incision group, and 54 eyes were the defective incision group. Pre- and postoperative (1 month and 6 months) corneal astigmatism and HOAs on anterior and posterior corneal surfaces, corneal volume, and corneal thickness (CT) were measured using Pentacam. The CCI features including incision length (IL), incision angles, distance from incision to central cornea (Dis-En/Ex), and CT at incision site were quantified using AS-OCT. RESULTS: The defective incision group showed shorter IL and larger incision angles [false discovery rate (FDR) - p < 0.05]. Changes in CT at incision site were more pronounced for the defective incision group (FDR - p < 0.05). Some SIA parameters were related to the certain specific CCI features, especially IL (FDR - p < 0.05). Both groups exhibited significant increased 6 mm posterior corneal tHOAs at 1 month (Bonferroni corrected - p < 0.01) and the defective incision group showed increased 6 mm posterior tHOAs at 6 months (Bonferroni corrected - p = 0.023). There were characteristic correlations between Zernike terms and CCI features including IL, CT, Dis-En/Ex, and incision angles at 1 month, especially over 6 mm zone. CONCLUSION: The CCI deformities can affect corneal recovery and induce more HOAs at 1 month postoperatively. Such effects became minor, but could persist until 6 months. The IL combined with Angle-En/Ex was important factor influencing CCI integrity and corneal optical quality.

8.
J Basic Microbiol ; 61(5): 430-442, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683727

RESUMO

The lentivirus-short hairpin RNA (shRNA) system is a widely used tool for RNA interference. Multiple factors may affect the RNA interference efficiency during lentivirus production and transduction procedures. Thus, an optimized protocol is required to achieve high-titer lentivirus and efficient gene delivery. In the present study, lentivirus was produced by transfecting lentiviral transfer and packaging plasmids into HEK 293T cells. The factors affecting lentiviral titer were assessed, including lentiviral plasmid ratio, lentiviral transfer plasmid type, serum type for cell culture, transfection reagent-plasmid mixture incubation time, and the inoculation density of 293T cells for transfection. The high-titer lentivirus was achieved when plasmids were transfected at a molar ratio of 1:1:1:2, and the transfection reagent-plasmid mixture was replaced 6-8 h after transfection. The pLVX-shRNA2 lentiviral transfer plasmid was associated with the highest lentiviral titer, while both pLVX-shRNA2 and psi-LVRU6GP plasmids were associated with efficient RNA interference in target cells. The serum type for 293T cell culture affected the lentiviral titer significantly, while the inoculation density of 293T cells showed no influence on transfection efficiency or lentiviral titer. Moreover, the human primary fibroblasts infected with lentivirus, using the centrifugation method, achieved higher transduction efficiency than those infected with the non-centrifugation method. In conclusion, this study helped optimize lentiviral production and transduction procedures for more efficient gene delivery.

9.
FASEB J ; 35(4): e21485, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709562

RESUMO

Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.

10.
Biochem Biophys Res Commun ; 550: 120-126, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33691198

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in a broad range of plants, primarily through type Ⅲ secreted effectors. However, the R. solanacearum effectors promoting susceptibility in host plants remain limited. In this study, we determined that the R. solanacearum effector RipV2 functions as a novel E3 ubiquitin ligase (NEL). RipV2 was observed to be locali in the plasma membrane after translocatio into plant cells. Transient expression of RipV2 in Nicotiana benthamiana could induce cell death and suppress the flg22-induced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, mediating such effects as attenuation of the expression of several PTI-related genes and ROS bursts. Furthermore, we demonstrated that the conserved catalytic residue is highly important for RipV2. Transient expression of the E3 ubiquitin ligase catalytic mutant RipV2 C403A alleviated the PTI suppression ability and cell death induction, indicating that RipV2 requires its E3 ubiquitin ligase activity for its role in plant-microbe interactions. More importantly, mutation of RipV2 in R. solanacearum reduces the virulence of R. solanacearum on potato. In conclusion, we identified a NEL effector that is required for full virulence of R. solanacearum by suppressing plant PTI.

11.
J Exp Clin Cancer Res ; 40(1): 50, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522955

RESUMO

BACKGROUND: Forkhead box C1 (FOXC1), as a member of the FOX family, is important for promote HCC invasion and metastasis. FOX family protein lays a pivotal role in metabolism. ROS is involved in tumor progression and is associated with the expression of lots of transcription factors. We next explored the mechanism underlying FOXC1 modulating the metabolism and ROS hemostasis in HCC. METHODS: We used amino acids arrays to verify which metabolism is involved in FOXC1-induced HCC. The kits were used to detect the ROS levels in HCC cells with over-expression or down-expression of FOXC1. After identified the downstream target genes and candidate pathway which regulated by FOXC1 during HCC progression in vitro and in vivo, we used western blot, immunohistochemistry, bisulfite genomic sequencing, methylation-specific PCR, chromatin immunoprecipitation analysis and luciferase reporter assays to explore the relationship of FOXC1 and downstream genes. Moreover, the correlation between FOXC1 and target genes and the correlation between target genes and the recurrence and overall survival were analyzed in two independent human HCC cohorts. RESULTS: Here, we reported that FOXC1 could inhibit the cysteine metabolism and increase reactive oxygen species (ROS) levels by regulating cysteine metabolism-related genes, cystathionine γ-lyase (CTH). Overexpression of CTH significantly suppressed FOXC1-induced HCC proliferation, invasion and metastasis, while the reduction in cell proliferation, invasion and metastasis caused by the inhibition of FOXC1 could be reversed by knockdown of CTH. Meanwhile, FOXC1 upregulated de novo DNA methylase 3B (DNMT3B) expression to induce DNA hypermethylation of CTH promoter, which resulted in low expression of CTH in HCC cells. Moreover, low levels of ROS induced by N-acetylcysteine (NAC) which is an antioxidant inhibited the cell proliferation, migration, and invasion abilities mediated by FOXC1 overexpression, whereas high levels of ROS induced by L-Buthionine-sulfoximine (BSO) rescued the suppression results mediated by FOXC1 knockdown. Our study demonstrated that the overexpression of FOXC1 that was induced by the ROS dependent on the extracellular regulated protein kinases 1 and 2 (ERK1/2)- phospho-ETS Transcription Factor 1 (p-ELK1) pathway. In human HCC tissues, FOXC1 expression was positively correlated with oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), p-ELK1 and DNMT3B expression, but negatively correlated with CTH expression. HCC patients with positive co-expression of 8-OHdG/FOXC1 or p-ELK1/FOXC1 or FOXC1/DNMT3B had the worst prognosis, whereas HCC patients who had positive FOXC1 and negative CTH expression exhibited the worst prognosis. CONCLUSION: In a word, we clarify that the positive feedback loop of ROS-FOXC1-cysteine metabolism-ROS is important for promoting liver cancer proliferation and metastasis, and this pathway may provide a prospective clinical treatment approach for HCC.

12.
Biochem Biophys Res Commun ; 546: 74-82, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33578292

RESUMO

Non-alcoholic fatty liver disease (NAFLD), an emerging risk factor for diabetes, is now recognized as the most common liver disease worldwide. Mesenchymal stem cells (MSCs), a promising tool in regenerative medicine, release abundant molecules into the conditioned medium (CM). Increasing evidence showed that MSC-CM is beneficial for diabetes-associated NAFLD. However, the mechanism of how MSC-CM improves NAFLD remains uncertain. In this study, to determine the effects of MSC-CM on NAFLD, streptozotocin (STZ) and high-fat diet (HFD) induced T2DM mice model and palmitic acid (PA)-stimulated L-O2 cells were used and treated with MSC-CM. Our results demonstrated that MSC-CM improved insulin resistance in diabetic mice, amended the pathological structure of the liver, enhanced the liver's total antioxidant capacity and mitochondrial function, reduced inflammation and cell apoptosis. We further verified that SIRT1 played a key role in mediating the protective effect of MSC-CM. These findings provide novel evidence that MSC-CM has the potential to treat T2DM patients with NAFLD clinically.

13.
BMC Infect Dis ; 21(1): 160, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557775

RESUMO

BACKGROUND: The widespread use of antiretroviral therapy (ART) has resulted in the development of transmitted drug resistance (TDR), which reduces ART efficacy. We explored TDR prevalence and its associated risk factors in newly diagnosed individuals in Guangxi. METHODS: We enrolled 1324 participants who were newly diagnosed with HIV-1 and had not received ART at voluntary counselling and testing centres (VCT) in Guangxi, China, who had not received ART. Phylogenetic relationship, transmission cluster, and genotypic drug resistance analyses were performed using HIV-1 pol sequences. We analysed the association of demographic and virological factors with TDR. RESULTS: In total, 1151 sequences were sequenced successfully, of which 83 (7.21%) showed evidence of TDR. Multivariate logistic regression analysis revealed that there was significant difference between the prevalence of TDR and unmarried status (adjusted odds ratio (aOR) = 2.41, 95% CI: 1.23-4.71), and CRF08_BC subtype (aOR = 2.03, 95% CI: 1.13-3.64). Most cases of TDR were related to resistance to non-nucleoside reverse transcriptase inhibitors (4.87%) and V179E was the most common mutation detected. We identified a total of 119 HIV transmission clusters (n = 585, 50.8%), of which 18 (15.1%) clusters showed evidence of TDR (36, 41.86%). Three clusters were identified that included drug-resistant individuals having a transmission relationship with each other. The following parameters were associated with TDR transmission risk: Unmarried status, educational level of junior high school or below, and CRF08_BC subtype may be a risk of the transmission of TDR. CONCLUSIONS: Our findings indicated that moderate TDR prevalence and highlighted the importance of continuous TDR monitoring and designing of strategies for TDR mitigation.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/diagnóstico , HIV-1/genética , Adulto , Antirretrovirais/uso terapêutico , China , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , Modelos Logísticos , Masculino , Filogenia , Prevalência , Fatores de Risco , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
14.
Rice (N Y) ; 14(1): 20, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630174

RESUMO

Heading date is an important agronomic trait of rice (Oryza sativa L.) and is regulated by numerous genes, some of which exhibit functional divergence in a genetic background-dependent manner. Here, we identified a late heading date 7 (lhd7) mutant that flowered later than wild-type Zhonghua 11 (ZH11) under natural long-day (NLD) conditions. Map-based cloning facilitated by the MutMap strategy revealed that LHD7 was on the same locus as OsPRR37 but exhibited a novel function as a promoter of heading date. A single-nucleotide mutation of G-to-A in the coding region caused a substitution of aspartic acid for glycine at site 159 within the pseudo-receiver (PR) domain of OsPRR37. Transcriptional analysis revealed that OsPRR37 suppressed Ghd7 expression in both ZH11 background under NLD conditions and the Zhenshan 97 background under natural short-day conditions. Consistently, the expression of Ehd1, Hd3a and RFT1 was enhanced by OsPRR37 in the ZH11 background. Genetic analysis indicated that the promotion of heading date and reduction in grain yield by OsPRR37 were partially dependent on Ghd7. Further investigation showed that the alternative function of OsPRR37 required an intact Ghd7-related regulatory pathway involving not only its upstream regulators OsGI and PhyB but also its interacting partner Hd1. Our study revealed the distinct role of OsPRR37 in the ZH11 background, which provides a more comprehensive understanding of OsPRR37 function and enriches the theoretical bases for improvement of rice heading date in the future.

15.
Reprod Sci ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619701

RESUMO

The placenta is important for pregnancy maintenance, and autophagy is documented to be essential for placental development. Autophagy is responsible for degrading and recycling cellular misfolded proteins and damaged organelles. Mitophagy is a selective type of autophagy, where the autophagic machinery engulfs the damaged mitochondria for degradation, and there is reciprocal crosstalk between autophagy and mitochondria. Within these processes, 5'-AMP-activated protein kinase (AMPK) plays an important role. However, the role of AMPK regulation in both autophagy and mitochondria in primary human trophoblasts is unknown. In this study, we address this question by investigating changes in mRNA expression and the abundance of autophagy- and mitochondria-related proteins in isolated human trophoblasts after treatment with AMPK agonists and antagonists. We found that compared to the control group, autophagy was slightly suppressed in the AMPK agonist group and significantly enhanced autophagy in the AMPK antagonist group. However, the expressions of genes related to autophagosome-lysosome fusion were reduced, while genes related to lysosomal function were unchanged in both groups. Furthermore, mitophagy and mitochondrial fusion/fission were both impaired in the AMPK agonist and antagonist groups. Although mitochondrial biogenesis was enhanced in both groups, the function of mitochondrial fatty acid oxidation was increased in the AMPK agonist group but decreased in the AMPK antagonist group. Overall, our study demonstrates that AMPK regulation negatively modulates autophagy and consequently affects mitophagy, mitochondrial fusion/fission, and function in primary human trophoblasts.

17.
Ecotoxicol Environ Saf ; 211: 111923, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493725

RESUMO

Bisphenol A (BPA), as a phenolic compound, is harmful to human health, and its residue in the aquatic environment also threatens the health of aquatic animals. In this research, the toxicity effects of BPA on liver tissues were evaluated in common carp (Cyprinus carpio) after long-term exposure. Fish were exposed to five concentrations of BPA (0, 0.01, 0.1, 0.5 and 2 mg/L) for 30 days. The blood and liver tissues were gathered to analyze biochemical indices and genes transcription levels. The data related to lipid metabolism showed that BPA exposure increased serum total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) levels, upregulated the expressions of fatp1, pparγ, fas, atgl, hsl, pparα, cpt1b, acox-1, and downregulated the expression of dgat1 in liver. Antioxidative parameters displayed a reduced antioxidant ability and increased lipid peroxidation after BPA exposure. Meanwhile, the upregulations of nrf2, ho-1, cyp1a and cyp1b genes revealed an adaptive response mechanism against oxidative stress-induced adverse effects. After 30 days of exposure, BPA induced apoptosis and endoplasmic reticulum stress (ERS) via upregulating the expression levels of apoptosis and ERS-related genes and increasing Ca2+ concentration in liver. Moreover, the downregulation of mtor and the upregulation of atg3, atg7, tfeb, uvrag and mcoln1 indicated that BPA could influence the normal process of autophagy. Furthermore, BPA exposure activated toll like receptors (TLRs) pathway to mediate the inflammatory response. Our results demonstrated that BPA exposure disturbed lipid metabolism, and induced oxidative stress, ERS, apoptosis, autophagy and inflammatory response in the liver of common carp. These findings contributed to the understanding of hepatotoxicity mechanism induced by BPA in fish.


Assuntos
Autofagia/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Imunidade/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose , Carpas/metabolismo , Carpas/fisiologia , Estresse do Retículo Endoplasmático , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/fisiologia , Estresse Oxidativo/efeitos dos fármacos
18.
Sci Rep ; 11(1): 513, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436843

RESUMO

The prevalence of HIV-1 in Guangxi is very high, and the rate of HIV-1 infection among men who have sex with men (MSM) has been increasing. Therefore, it is necessary to explore the patterns and risk factors of HIV transmission in Guangxi. For this purpose, individuals diagnosed with HIV-1 during 2013-2018 in Guangxi were recruited. Phylogenetic relationship, transmission clusters, and genotypic drug resistance analyses were performed based on HIV-1 pol sequences. Related factors were analysed to assess for their association with HIV-1 transmission. CRF07_BC (50.4%) and CRF01_AE (33.4%) were found to be the predominant subtypes. The analysed 1633 sequences (50.15%, Guangxi; 49.85%, other provinces) were segregated into 80 clusters (size per cluster, 2-704). We found that 75.3% of the individuals were in three clusters (size Ëƒ 100), and 73.8% were high-risk spreaders (links ≥ 4). Infection time, marital status, and subtype were significantly associated with HIV-1 transmission. Additionally, 80.2% of recent infections were linked to long-term infections, and 46.2% were linked to other provinces. A low level of transmitted drug resistance was detected (4.8%). Our findings indicated superclusters and high-risk HIV-1 spreaders among the MSM in Guangxi. Effective strategies blocking the route of transmission should be developed.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32861895

RESUMO

Glyphosate (Gly) is an active ingredient of herbicide, its underlying toxicity on fish is still unclear. The aim of this study was to evaluate chronic toxicity of Gly on tilapia via determining antioxidative status, metabolism, inflammation and immune response. The fish were exposed to different concentrations of Gly (0, 0.2, 0.8, 4 and 16 mg/L) for 80 days. The blood, liver, gills and spleen were collected to assay biochemical parameters and genes expression after 80 days of exposure. The results showed that treatments with higher Gly (4 and/16 mg/L) significantly increased the levels of TC, TG, AST, ALT, LDL-C and MDA, and apparently decreased the levels of SOD, GSH, CAT, HDL-C, HK, G3PDH, FBPase and G6PD in serum, liver and/or gills. The gene expression data showed that the treatments with Gly adversely affected Nrf2 pathway in liver, gills and spleen, as shown by significant changes of nrf2, keap1, ho-1, nqo1 and gsta mRNA levels. Meanwhile, inflammatory response was activated via enhancing the mRNA levels of nf-κb2, rel, rela tnf-α, and il-1ß, and immunotoxicity was caused through downregulating the genes expression of c-lzm, hep, igm, hsp70 and c3 in liver, gills and/or spleen of tilapia after Gly exposure. Moreover, the mRNA levels of cyp1a and cyp3a were upregulated in 16 or 0.2 mg/kg Gly group in liver. Overall results suggested chronic Gly exposure reduced antioxidative ability, disturbed liver metabolism, promoted inflammation and suppressed immunity. Interestingly, the Nrf2 and NF-κB signaling pathways played key roles in Gly chronic toxicity.

20.
Food Chem ; 334: 127550, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693335

RESUMO

Potato accumulates large amounts of soluble sugar during cold storage periods. However, a system based understanding of this process is still largely unknown. Here, we compared the dynamic cold-responded transcriptome of genotypes between cold-induced sweetening resistant (CIS-R) and cold-induced sweetening sensitive (CIS-S) in tubers. Comparative transcriptome revealed that activating the pathways of starch degradation, sucrose synthesis and hydrolysis could be common strategies in response to cold in both genotypes. Moreover, the variation in sugar accumulation between genotypes may be due to genetic differences in cold response, which could be mainly explained: CIS-R genotype was active in starch synthesis and attenuated in sucrose hydrolysis by promoting the coordinate expression of aseries ofgenes involved in starch-sugar interconversion. Additionally, transcription factors, the candidate master regulators of starch-sugar interconversion, were discussed. Taken together, this work has provided an avenue for studying the mechanism involved in the regulation of the CIS resistance.


Assuntos
Solanum tuberosum/genética , Amido/metabolismo , Açúcares/metabolismo , Edulcorantes/metabolismo , Transcriptoma , Temperatura Baixa , Regulação para Baixo , Genótipo , Hidrólise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Análise de Componente Principal , Solanum tuberosum/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...