Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(4): e2003458, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33325584

RESUMO

Immunotherapy has offered new treatment options for cancer; however, the therapeutic benefits are often modest and desired to be improved. A semiconducting polymer nanoadjuvant (SPNII R) with a photothermally triggered cargo release for second near-infrared (NIR-II) photothermal immunotherapy is reported here. SPNII R consists of a semiconducting polymer nanoparticle core as an NIR-II photothermal converter, which is doped with a toll-like receptor (TLR) agonist as an immunotherapy adjuvant and coated with a thermally responsive lipid shell. Upon NIR-II photoirradiation, SPNII R effectively generates heat not only to ablate tumors and induce immunogenic cell death (ICD), but also to melt the lipid layers for on-demand release of the TLR agonist. The combination of ICD and activation of TLR7/TLR8 enhances the maturation of dendritic cells, which amplifies anti-tumor immune responses. Thus, a single treatment of SPNII R-mediated NIR-II photothermal immunotherapy effectively inhibits growth of both primary and distant tumors and eliminates lung metastasis in a murine mouse model. This study thus provides a remote-controlled smart delivery system to synergize photomedicine with immunotherapy for enhanced cancer treatment.

2.
ACS Biomater Sci Eng ; 6(12): 6790-6799, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320605

RESUMO

Disability and even death from acute thrombosis remain a grave menace to public health. At present, the traditional drugs represented by urokinase (UK) in clinical thrombolysis can cause side effects of bleeding when the dosage is excess. Therefore, a more effective and safer method of thrombolysis is urgently needed. In this paper, a multifunctional dual-drug sequential release thrombolysis platform (UK-UH@PDA@HMSNs) consisting of polydopamine (PDA)-modified hollow mesoporous silicon (HMSNs) loading with UK and unfractionated heparin (UH) was constructed with a double physical assistance (NIR-II and bubbles). With the aid of near infrared-II (NIR-II, 1064 nm, 1.0 W cm-2) laser, the photothermal effect of PDA could be motivated to facilitate the UH release, thereby accelerating the dissolution of thrombus. Afterward, the local hyperthermia effect could expedite the phase transition of l-menthol in HMSNs to generate bubbles to promote the release of UK, thereby realizing the sequential release of two thrombolytic drugs. Importantly, this method deftly conquered the inherent obstacle that UK and UH cannot be combined directly. In vivo and in vitro experiments proved that the thrombolytic efficiency of UK-UH@PDA@HMSNs stimulated by NIR-II was nearly 3 times than that of UK alone. Collectively, the proposed dual physical assistance and sequential dual-drug delivery system significantly improved the efficiency of thrombolysis under the premise of limiting drug doses; the risk of death from intracranial hemorrhage thus could be decreased radically.

3.
Front Pharmacol ; 11: 584057, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041827

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) has affected millions of people worldwide. Critically ill COVID-19 patients develop viral septic syndrome, including inflammatory damage, immune dysfunction, and coagulation disorder. In this study, we investigated ShenFuHuang formula (SFH), a traditional Chinese medicine, which has been widely used as complementary therapy for clinical treatment of COVID-19 in Wuhan, to understand its pharmacological properties. Results of systems pharmacology identified 49 active compounds of SFH and their 69 potential targets, including GSK3ß, ESR1, PPARG, PTGS2, AKR1B10, and MAPK14. Network analysis illustrated that the targets of SFH may be involved in viral disease, bacterial infection/mycosis, and metabolic disease. Moreover, signaling pathway analysis showed that Toll-like receptors, MAPK, PPAR, VEGF, NOD-like receptor, and NF-kappa B signaling pathways are highly connected with the potential targets of SFH. We further employed multiple zebrafish models to confirm the pharmacological effects of SFH. Results showed that SFH treatment significantly inhibited the inflammatory damage by reducing the generation of neutrophils in Poly (I:C)-induced viral infection model. Moreover, SFH treatment could improve the phagocytosis of macrophages and enhance the expression of immune genes in an immune deficiency model. Furthermore, SFH treatment exhibited promising anti-thrombosis effect in a thrombus model. This study provided additional evidence of SFH formula for treating COVID-19 patients with septic syndrome using multiple-scale estimation.

4.
Oncol Rep ; 44(5): 1929-1938, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901849

RESUMO

Endometrial cancer is one of the three major malignant tumors of the female reproductive system. Although cyclin­dependent kinase 9 (CDK9) has a definitive pathogenic role in various types of cancer, little is known concerning its function in endometrial cancer. Our study was conducted to evaluate the expression and therapeutic potential of CDK9 in endometrial cancer. CDK9 expression was determined by immunohistochemistry in endometrial cancer tissues constructed with paired primary, metastatic, and recurrent tumor tissues from 32 endometrial cancer patients. Small interfering RNA (siRNA) and inhibitors of CDK9 were used to evaluate the effect of CDK9 inhibition on the anti­apoptotic activity and proliferation in endometrial cancer cells. Colony formation assay and wound­healing assays were adopted to assess clonal formation and migratory capacity. The results of the immunohistochemistry demonstrated that CDK9 was highly expressed in the human endometrial cancer cell lines; moreover, it was elevated in metastatic and recurrent endometrial tumor tissue compared when compared with that in patient­matched primary endometrial tumor tissue. Knockdown of CDK9 with siRNA and inhibition of CDK9 activity with the inhibitor suppressed cell proliferation and promoted apoptosis in endometrial cancer. In conclusion, our results provide evidence that CDK9 may be a potential prognostic biomarker and a promising therapeutic target for the treatment of endometrial cancer in the future.

5.
Oxid Med Cell Longev ; 2020: 3815185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908632

RESUMO

Cardiac dysfunction is a critical manifestation of sepsis-induced multiorgan failure and results in the high mortality of sepsis. Our previous study demonstrated that a traditional Chinese medicine formula, Qiang-Xin 1 (QX1), ameliorates cardiac tissue damage in septic mice; however, the underlying pharmacology mechanism remains to be elucidated. The present study was aimed at clarifying the protective mechanism of the QX1 formula on sepsis-induced cardiac dysfunction. The moderate sepsis model of mice was established by cecal ligation and puncture surgery. Treatment with the QX1 formula improved the 7-day survival outcome, attenuated cardiac dysfunction, and ameliorated the disruption of myocardial structure in septic mice. Subsequent systems pharmacology analysis found that 63 bioactive compounds and the related 79 candidate target proteins were screened from the QX1 formula. The network analysis showed that the QX1 active components quercetin, formononetin, kaempferol, taxifolin, cryptotanshinone, and tanshinone IIA had a good binding activity with screened targets. The integrating pathway analysis indicated the calcium, PI3K/AKT, MAPK, and Toll-like receptor signaling pathways may be involved in the protective effect of the QX1 formula on sepsis-induced cardiac dysfunction. Further, experimental validation showed that the QX1 formula inhibited the activity of calcium/calmodulin-dependent protein kinase II (CaMKII), MAPK (P38, ERK1/2, and JNK), and TLR4/NF-κB signaling pathways but promoted the activation of the PI3K/AKT pathway. A cytokine array found that the QX1 formula attenuated sepsis-induced upregulated levels of serum IFN-γ, IL-1ß, IL-3, IL-6, IL-17, IL-4, IL-10, and TNF-α. Our data suggested that QX1 may represent a novel therapeutic strategy for sepsis by suppressing the activity of calcium, MAPK, and TLR4/NF-κB pathways, but promoting the activation of AKT, thus controlling cytokine storm and regulating immune balance. The present study demonstrated the multicomponent, multitarget, and multipathway characteristics of the QX1 formula and provided a novel understanding of the QX1 formula in the clinical application on cardiac dysfunction-related diseases.

6.
Cancer Med ; 9(20): 7695-7705, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32862492

RESUMO

BACKGROUND: Bladder cancer (BC) is a common urinary neoplasm with high incidence worldwide. Long noncoding RNA zinc ribbon domain containing 1 antisense RNA 1 (ZNRD1-AS1) has been reported to be upregulated in BC. However, the exact role of ZNRD1-AS1 as well as its mechanism remains poorly understood. METHODS: Zinc ribbon domain containing 1 antisense RNA 1, and its potential downstream genes microRNA-194 (miR-194) and zinc finger E-box binding homeobox 1 (ZEB1) levels were detected via quantitative real-time polymerase chain reaction or western blot. Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were detected to assess the influences of ZNRD1-AS1, miR-194 and ZEB1 on BC cells by colony formation, cell counting kit-8 (CCK-8), transwell analysis or western blot. The relationship between miR-194 and ZNRD1-AS1 or ZEB1 was analyzed by luciferase activity analysis. The xenograft experiment was performed to assess the function of ZNRD1-AS1 in vivo. RESULTS: Zinc ribbon domain containing 1 antisense RNA 1level was upregulated in BC. ZNRD1-AS1 silence repressed proliferation, migration, invasion and EMT in BC cells. MiR-194 was identified as a target of ZNRD1-AS1, and miR-194 upregulation repressed proliferation, migration, invasion, and EMT by ZNRD1-AS1 sponging. ZEB1 was targeted via miR-194 and its interference impeded proliferation, migration, invasion, and EMT. Moreover, ZNRD1-AS1 regulated ZEB1 expression via miR-194. Besides, inhibition of ZNRD1-AS1 attenuated tumor growth by miR-194/ZEB1 axis in vivo. CONCLUSION: Knockdown of ZNRD1-AS1 suppressed BC cell development in vitro and in vivo via targeting miR-194 to regulate ZEB1, indicating a novel avenue for treatment of BC.

7.
Oral Oncol ; 108: 104771, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485608

RESUMO

OBJECTIVES: It is unknown whether or not the body composition is correlated with the prognosis and inflammatory response in patients with nasopharyngeal cancer (NPC). MATERIALS AND METHODS: This cohort included 1767 patients with NPC. Visceral, subcutaneous and intra muscular adipose tissues (VAT, SAT and IMAT), and skeletal muscle index were quantified with computed tomography. We used the optimal stratification to select cut points for VAT, SAT and IMAT. We defined sarcopenia according to a widely used cut-point. The primary endpoint was overall survival (OS). The association between body composition and inflammatory response was also examined. RESULTS: Low VAT, SAT, IMAT and sarcopenia were observed in 260 (14.7%), 451 (25.5%), 773 (43.7%) and 683 (38.7%) patients, respectively. Low VAT (P < 0.001, hazard ratio [HR], 1.884; 95% confidence interval [CI], 1.436-2.473,) and SAT (P = 0.022, HR, 1.334, 95%CI, 1.043-1.706) were both associated worse survival. IMAT and sarcopenia were not with prognostic value. In multivariate analysis, we found the prognostic value of the VAT (HR: 1.544, 95% CI: 1.128-2.114; P = 0.007) was independent of T stage, N stage, disease stage, lactic dehydrogenase, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), the systemic immune-inflammation index (SII), EBV-DNA and body mass index. We observed higher NLR (P = 0.028) and PLR (P < 0.001) in patients with low SAT. Both low VAT (P = 0.009) and SAT (P = 0.005) were associated with decreased stromal lymphocyte infiltrating intensity. CONCLUSIONS: Among body composition parameters, VAT was an independent prognostic factor, especially in patients with locally advanced NPC.

8.
Front Pharmacol ; 11: 579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457609

RESUMO

Sepsis commonly leads to acute and long-term cognitive and affective impairments which are associated with increased mortality in patients. Neuroinflammation characterized by excessive cytokine release and immune cell activation underlies the behavioral changes associated with sepsis. We previously reported that the administration of a traditional Chinese herbal Qiang Xin 1 (QX1) formula improves survival in septic mice. This study was performed to better understand the effects and the mechanisms of QX1 formula treatment on behavioral changes in a preclinical septic model induced by cecal ligation and puncture. Oral administration of QX1 formula significantly improved survival, alleviated overall cognitive impairment and emotional dysfunction as assessed by the Morris water maze, novel object recognition testing, elevated plus maze and open field testing in septic mice. QX1 formula administration dramatically inhibited short and long-term excessive pro-inflammatory cytokine production both peripherally and centrally, and was accompanied by diminished microglial activation in septic mice. Biological processes including synaptic transmission, microglia cell activation, cytokine production, microglia cell polarization, as well as inflammatory responses related to signaling pathways including the MAPK signaling pathway and the NF-κB signaling pathway were altered prominently by QX1 formula treatment in the hippocampus of septic mice. In addition, QX1 formula administration decreased the expression of the M1 phenotype microglia gene markers such as Cd32, Socs3, and Cd68, while up-regulated M2 phenotype marker genes including Myc, Arg-1, and Cd206 as revealed by microarray analysis and Real-time PCR. In conclusion, QX1 formula administration attenuates cognitive deficits, emotional dysfunction, and reduces neuroinflammatory responses to improve survival in septic mice. Diminished microglial activation and altered microglial polarization are involved in the neuroprotective mechanism of QX1 formula.

9.
J Mater Chem B ; 8(31): 6898-6904, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32400838

RESUMO

Stimuli-responsive and targetable nanomedicine systems have been widely applied as effective modalities for drug delivery and tumor therapeutics. Particle shape is also important for the biodistribution and cellular uptake in drug delivery applications. Here, morphology tunable and acid-responsive dextran-doxorubicin conjugate assemblies of DD-M and DDF-V for targeted doxorubicin (DOX) delivery were constructed, which contain the following favorable advantages: (1) one-pot synthesis of the drug loaded system with a Schiff base reaction is a green chemistry method which is better than the conventional drug conjugation/encapsulation methods. (2) The morphology of the nanoparticles could be regulated from a micelle (DD-M) to vesicle (DDF-V) structure by either introducing folic acid (FA) or not. (3) The abundant hydroxyl groups and electronegativity give DD-M and DDF-V superior stability in the physiological environment. (4) Besides, the multifunctional DDF-V with its important merits including tumor-targeting ability and acid-responsiveness is specific for DOX delivery in cancer therapy. (5) Compared to free DOX and DD-M, DDF-V displayed enhanced anti-tumor efficacy both in vitro and in vivo without obvious systematic toxicity. The morphology tunable, acid-sensitive and targetable nanosystem could be a promising strategy for site-specific drug delivery and potential cancer therapy in the future.

10.
Int J Oncol ; 56(5): 1055-1063, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319566

RESUMO

Osteosarcoma is the most common bone tumor affecting both adolescents and children. Early detection is critical for the effective treatment of the disease. Derived from cancer cells, miR­21 contained within exosomes in the tumor microenvironment may act on both cancer cells and the surrounding tumor microenvironment (TME), including immune cells, endothelial cells and fibroblasts. In human serum and plasm, the level of exosomal miR­21 between osteosarcoma patients and healthy controls differs, supporting the role of miR­21 as a biomarker for osteosarcoma. The involvement of a number of miR­21 target genes in tumor progression suggests that miR­21 may significantly affect the plasticity of cancer cells, leading to tumor progression, metastasis, angiogenesis and immune escape in osteosarcoma. Understanding the biogenesis and functions of exosomal miR­21 is of great value for the diagnosis and therapy of cancer, including osteosarcoma. The present review discusses the role of miR­21 in the tumor microenvironment, and in the development and progression of osteosarcoma, with an aim to summarize the functions of this miRNA in cancer.

11.
Front Pharmacol ; 11: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308620

RESUMO

Intestinal barrier dysfunction is an important clinical problem in various acute and chronic pathological conditions. Ferulic acid (FA) can attenuate the intestinal epithelial barrier dysfunction, however, the underlying mechanism remains unclear. The present study aimed to uncover the protective effect of FA on intestinal epithelial barrier dysfunction in a Caco-2 cell model of lipopolysaccharide (LPS) stimulation and the underlying mechanism. Caco-2 cells were pretreated with FA and then exposed to LPS stimulation. The barrier function of Caco-2 cells was evaluated by measuring trans-epithelial resistance (TER) and 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4) flux, and analyzing the tight junction protein expression and structure. The results showed that decreased TER and increased FITC-FD4 flux were observed in Caco-2 cells stimulated with LPS, but these effects were attenuated by FA pretreatment. FA pretreatment inhibited LPS-induced decrease in occludin and ZO-1 mRNA and protein expression. LPS stimulation decreased miR-200c-3p expression, whereas this decrease was inhibited by FA pretreatment. Furthermore, overexpression of miR-200c-3p strengthened the protective effects of FA on LPS-induced Caco-2 cell barrier dysfunction by decreasing epithelial permeability, increasing occludin and ZO-1 protein expression, and maintaining of ZO-1 protein distribution, while suppression of miR-200c-3p reversed the protective effects of FA. LPS treatment increased the expression of PTEN protein and decreased expression of phosphorylated PI3K and AKT proteins. However, pretreatment of FA inhibited expression of PTEN protein and promoted activation of PI3K/AKT signaling pathway in the LPS-treated Caco-2 cells, and this regulatory effect of FA on the PTEN/PI3K/AKT signaling pathway was strengthened or weakened by miR-200c-3p overexpression or suppression, respectively. Our findings suggested that in Caco-2 cells, FA promotes activation of PI3K/AKT pathway by miR-200c-3p-mediated suppression of the negative mediator PTEN, which, in turn, maintains TJ function and thus ameliorates LPS-induced intestinal epithelial barrier dysfunction.

12.
Nano Lett ; 20(5): 3039-3049, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32250633

RESUMO

Combination of chemotherapy and gene therapy provides an effective strategy for cancer treatment. However, the lack of suitable codelivery systems with efficient endo/lysosomal escape and controllable drug release/gene unpacking is the major bottleneck for maximizing the combinational therapeutic efficacy. In this work, we developed a photoactivatable Pt(IV) prodrug-backboned polymeric nanoparticle system (CNPPtCP/si(c-fos)) for light-controlled si(c-fos) delivery and synergistic photoactivated chemotherapy (PACT) and RNA interference (RNAi) on platinum-resistant ovarian cancer (PROC). Upon blue-light irradiation (430 nm), CNPPtCP/si(c-fos) generates oxygen-independent N3• with mild oxidation energy for efficient endo/lysosomal escape through N3•-assisted photochemical internalization with less gene deactivation. Thereafter, along with Pt(IV) prodrug activation, CNPPtCP/si(c-fos) dissociates to release active Pt(II) and unpack si(c-fos) simultaneously. Both in vitro and in vivo results demonstrated that CNPPtCP/si(c-fos) displayed excellent synergistic therapeutic efficacy on PROC with low toxicity. This PACT prodrug-backboned polymeric nanoplatform may provide a promising gene/drug codelivery tactic for treatment of various hard-to-tackle cancers.

13.
Adv Mater ; 32(17): e1908530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32141674

RESUMO

Photoacoustic (PA) imaging agents detect disease tissues and biomarkers with increased penetration depth and enhanced spatial resolution relative to traditional optical imaging, and thus hold great promise for clinical applications. However, existing PA imaging agents often encounter the issues of slow body excretion and low-signal specificity, which compromise their capability for in vivo detection. Herein, a fluoro-photoacoustic polymeric renal reporter (FPRR) is synthesized for real-time imaging of drug-induced acute kidney injury (AKI). FPRR simultaneously turns on both near-infrared fluorescence (NIRF) and PA signals in response to an AKI biomarker (γ-glutamyl transferase) with high sensitivity and specificity. In association with its high renal clearance efficiency (78% at 24 h post-injection), FPRR can detect cisplatin-induced AKI at 24 h post-drug treatment through both real-time imaging and optical urinalysis, which is 48 h earlier than serum biomarker elevation and histological changes. More importantly, the deep-tissue penetration capability of PA imaging results in a signal-to-background ratio that is 2.3-fold higher than NIRF imaging. Thus, the study not only demonstrates the first activatable PA probe for real-time sensitive imaging of kidney function at molecular level, but also highlights the polymeric probe structure with high renal clearance.

14.
Angew Chem Int Ed Engl ; 59(26): 10633-10638, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32207214

RESUMO

This study reports the development of iron-chelated semiconducting polycomplex nanoparticles (SPFeN) for photoacoustic (PA) imaging-guided photothermal ferrotherapy of cancer. The hybrid polymeric nanoagent comprises a ferroptosis initiator (Fe3+ ) and an amphiphilic semiconducting polycomplex (SPC ) serving as both the photothermal nanotransducer and iron ion chelator. By virtue of poly(ethylene glycol) (PEG) grafting and its small size, SPFeN accumulates in the tumor of living mice after systemic administration, which can be monitored by PA imaging. In the acidic tumor microenvironment, SPFeN generates hydroxyl radicals, leading to ferroptosis; meanwhile, under NIR laser irradiation, it generates localized heat to not only accelerate the Fenton reaction but also implement photothermal therapy. Such a combined photothermal ferrotherapeutic effect of SPFeN leads to minimized dosage of iron compared to previous studies and effectively inhibits the tumor growth in living mice, which is not possible for the controls.

15.
J Am Chem Soc ; 142(15): 7075-7082, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32196318

RESUMO

Real-time imaging of immunoactivation is imperative for cancer immunotherapy and drug discovery; however, most existing imaging agents possess "always-on" signals and thus have poor signal correlation with immune responses. Herein, renal-clearable near-infrared (NIR) fluorescent macromolecular reporters are synthesized to specifically detect an immunoactivation-related biomarker (granzyme B) for real-time evaluation of cancer immunotherapy. Composed of a peptide-caged NIR signaling moiety linked with a hydrophilic poly(ethylene glycol) (PEG) passivation chain, the reporters not only specifically activate their fluorescence by granzyme B but also passively target the tumor of living mice after systemic administration. Such granzyme B induced in vivo signals of the reporters are validated to correlate well with the populations of cytotoxic T lymphocytes (CD8+) and T helper (CD4+) cells detected in tumor tissues. By virtue of their ideal renal clearance efficiency (60% injected doses at 24 h postinjection), the reporters can be used for optical urinalysis of immunoactivation simply by detecting the status of excreted reporters. This study thus proposes a molecular optical imaging approach for noninvasive evaluation of cancer immunotherapeutic efficacy in living animals.

16.
Materials (Basel) ; 13(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218384

RESUMO

Lithium tantalite (LiTaO3) is a common piezoelectric and ferroelectric crystal, but the LiTaO3 polycrystalline ceramics have rarely been reported, and their refractory character presents difficulties in their fabrication. In this study, LiTaO3-based ceramics with different amounts of CoO were prepared by pressureless sintering at 1250 °C, and the effects of the amount of sintering aid on the sinterability, microstructure, and dielectric properties of the ceramics were investigated. The relative densities of the LiTaO3-based ceramics were significantly improved by the addition of CoO powder. The LiTaO3-based ceramics achieved the highest relative density (89.4%) and obtained a well-grained microstructure when the added amount of CoO was 5 wt.%. Only the LiTaO3 phase in the ceramics was observed, indicating that the ions Co diffused into the LiTaO3 lattices and mainly existed in two forms: Co2+ and Co3+. The effects of the added amount of CoO on the dielectric properties of the LiTaO3-based ceramics were studied thoroughly. Consequently, the dielectric constant was enhanced, and the dielectric loss decreased in the LiTaO3-based ceramics with the addition of CoO. The optimal value was obtained at 5 wt.% of CoO-added LiTaO3-based ceramics.

17.
Angew Chem Int Ed Engl ; 59(18): 7018-7023, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32124526

RESUMO

Discriminative detection of invasive and noninvasive breast cancers is crucial for their effective treatment and prognosis. However, activatable probes able to do so in vivo are rare. Herein, we report an activatable polymeric reporter (P-Dex) that specifically turns on near-infrared (NIR) fluorescent and photoacoustic (PA) signals in response to the urokinase-type plasminogen activator (uPA) overexpressed in invasive breast cancer. P-Dex has a renal-clearable dextran backbone that is linked with a NIR dye caged with an uPA-cleavable peptide substrate. Such a molecular design allows P-Dex to passively target tumors, activate NIR fluorescence and PA signals to effectively distinguish invasive MDA-MB-231 breast cancer from noninvasive MCF-7 breast cancer, and ultimately undergo renal clearance to minimize the toxicity potential. Thus, this polymeric reporter holds great promise for the early detection of malignant breast cancer.

18.
Front Neurosci ; 14: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063834

RESUMO

To investigate the potential applications and the molecular mechanisms of transcranial direct current stimulation (tDCS) on cognitive impairment in a vascular dementia (VD) animal model. Sprague-Dawley rats were used in this study. VD rat model was induced by modified permanent bilateral common carotid artery occlusion (2-VO) approach. Anodal tDCS was applied to the animals. Morris water maze was used to analyze spatial memory and navigation ability. The pathological changes in the hippocampal CA1 region and cerebral cortex were examined via Hematoxylin-Eosin staining. The rats were sacrificed for the measurement of the level of superoxide (SOD), glutathione (GSH), reactive oxidative species (ROS), malondialdehyd (MDA), Interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α level in the hippocampus. Western blot was carried out to measure the hippocampal expression of microtubule-associated protein 1 light chain 3 (LC-3) and p62. Rats with VD have decreased number of neurons in the hippocampus and cerebral cortex, as well as worse cognitive impairment. The proliferation of activated microglia and astroglia, accompanied with attenuation of myelination were observed in the white matter about 1 month after 2-VO operation. These abnormalities were significantly ameliorated by tDCS treatment. Further study revealed that anodal tDCS could suppress the MDA and ROS level, while enhance the SOD and GSH level to reduce the oxidative stress. Anodal tDCS could inhibit hypoperfusion-induced IL-1ß, IL-6, and TNF-α expression to attenuate inflammatory response in hippocampus. Moreover, anodal tDCS treatment could alleviate autophagy level. The study has demonstrated a possible therapeutic role of tDCS in the treatment of cognitive impairment in VD.

19.
Physiol Plant ; 168(4): 948-962, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31621913

RESUMO

Cultivated strawberry, one of the major fruit crops worldwide, is an evergreen plant with shallow root system, and thus sensitive to environmental changes, including drought stress. To investigate the effect of 5-aminolevulinic acid (ALA), a new environment-friendly plant growth regulator, on strawberry drought tolerance and its possible mechanisms, we treated strawberry (Fragaria × annanasa Duch. cv. 'Benihoppe') with 15% polyethylene glycol 6000 to simulate osmotic stress with or without 10 mg l-1 ALA. We found that ALA significantly alleviated PEG-inhibited plant growth and improved water absorption and xylem sap flux, indicating ALA mitigates the adverse effect of osmotic stress on strawberry plants. Gas exchange and chlorophyll fluorescence analysis showed that ALA mitigated PEG-induced decreases of Pn , Gs , Tr , Pn /Ci , photosystem I and II reaction center activities, electron transport activity, and photosynthetic performance indexes. Equally important, ALA promoted PEG-increased antioxidant enzyme activities and repressed PEG-increased malondialdehyde and superoxide anion in both leaves and roots. Specially, ALA repressed H2 O2 increase in leaves, but stimulated it in roots. Furthermore, ALA repressed abscisic acid (ABA) biosynthesis and signaling gene expressions in leaves, but promoted those in roots. In addition, ALA blocked PEG-downregulated expressions of plasmalemma and tonoplast aquaporin genes PIP and TIP in both leaves and roots. Taken together, ALA effectively enhances strawberry drought tolerance and the mechanism is related to the improvement of water absorption and conductivity. The tissue-specific responses of ABA biosynthesis, ABA signaling, and H2 O2 accumulation to ALA in leaves and roots play key roles in ALA-improved strawberry tolerance to osmotic stress.


Assuntos
Ácido Aminolevulínico/farmacologia , Fragaria/fisiologia , Pressão Osmótica , Estresse Fisiológico , Ácido Abscísico , Secas , Folhas de Planta , Raízes de Plantas
20.
Inflammation ; 43(1): 220-230, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31720989

RESUMO

Periodontitis is an inflammation characterized by alveolar bone resorption caused by imbalance in bone homeostasis. It is known that autophagy is related to inflammation and bone metabolism. However, whether autophagy inhibitors could be used for periodontitis in animal models remains unknown. We investigated the role of two classical autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), on the development of rat experimental periodontitis in terms of the bone loss (micro-CT), the number of inflammatory cells (hematoxylin and eosin staining), and the osteoclastic activity (tartrate-resistant acid phosphatase staining). Expression of autophagy-related genes and nuclear factor kappa B p65 (NF-κB p65) were assessed by immunohistochemistry. Expression of Beclin-1 and microtubule-associated proteins 1A/1B light chain 3 (LC3) were analyzed by Western blot. To further observe the effect of autophagy inhibitors on osteoclasts (OCs) in vitro, bone marrow-derived mononuclear macrophages were used. Together, these findings indicated that topical administration of 3-MA or CQ reduced the infiltration of inflammatory cells and alveolar bone resorption in experimental periodontitis. Furthermore, 3-MA and CQ may attenuate activation of OCs by autophagy. Therefore, 3MA and CQ may have prophylactic and therapeutic potential for inflammation and alveolar bone resorption in periodontitis in the future.


Assuntos
Adenina/análogos & derivados , Perda do Osso Alveolar/prevenção & controle , Processo Alveolar/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Osteoclastos/efeitos dos fármacos , Periodontite/prevenção & controle , Adenina/farmacologia , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/patologia , Processo Alveolar/metabolismo , Processo Alveolar/microbiologia , Processo Alveolar/patologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Masculino , Osteoclastos/metabolismo , Osteoclastos/microbiologia , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA