Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
1.
Nano Lett ; 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561343

RESUMO

Quantum dot (QD) sensitized molecular triplet excited state generation has been a promising alternative for traditional triplet state harvesting schemes. However, the correlation between QD bright/dark states and QD sensitized triplet energy transfer (TET) has been unclear. Herein, we studied the bright/dark states contribution to TET with CdSe/CdS core/shell QD-oligothiophene as the model system. Equilibrium between QD bright and dark states was tuned by changing temperature, and TET dynamics were monitored with transient absorption spectroscopy. Analysis of acceptor triplet excited state growth kinetics yields rates of TET from bright and dark states as 0.492 ± 0.011 ns-1 and 0.0271 ± 0.0014 ns-1 at 5 K, suggesting significant contribution of bright states to TET. The result was rationalized by bright state wave function components with the same electron/hole spin projections leading to nonzero TET probability. The study provides new insights into QD sensitized TET mechanisms and inspiration for future TET efficiency optimization through QD exciton engineering.

2.
J Phys Chem Lett ; 13(18): 4159-4169, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35507918

RESUMO

Understanding the mechanisms to activate and functionalize dinitrogen (N2) is of great importance for the rational design of nitrogen-fixation catalysts. Reactions of gas-phase species with N2 are being actively studied to understand the bond activation and formation processes at a strictly molecular level. This Perspective provides an overview of the recent progress in combined experimental and theoretical studies on the activation and functionalization of N2 by gas-phase metal species. New mechanistic insights into N2 molecular adsorption, N≡N cleavage, and N-X (X = C, B, and H) formation have been introduced, in which the new reaction channels of ejecting neutral metal fragments and the coupling reactions of N2 with other molecules are highlighted. Finally, the current challenges and outlooks of N2 activation in the gas phase are discussed as well.

3.
Nature ; 605(7909): 332-339, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35508659

RESUMO

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.

4.
Front Genet ; 13: 853612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464838

RESUMO

With the upgrade and development of the high-throughput sequencing technology, multi-omics data can be obtained at a low cost. However, mapping tools that existed for microbial multi-omics data analysis cannot satisfy the needs of data description and result in high learning costs, complex dependencies, and high fees for researchers in experimental biology fields. Therefore, developing a toolkit for multi-omics data is essential for microbiologists to save effort. In this work, we developed MicrobioSee, a real-time interactive visualization tool based on web technologies, which could visualize microbial multi-omics data. It includes 17 modules surrounding the major omics data of microorganisms such as the transcriptome, metagenome, and proteome. With MicrobioSee, methods for plotting are simplified in multi-omics studies, such as visualization of diversity, ROC, and enrichment pathways for DEGs. Subsequently, three case studies were chosen to represent the functional application of MicrobioSee. Overall, we provided a concise toolkit along with user-friendly, time-saving, cross-platform, and source-opening for researchers, especially microbiologists without coding experience. MicrobioSee is freely available at https://microbiosee.gxu.edu.cn.

5.
Chemistry ; : e202200062, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419859

RESUMO

Methane is an abundant and cheap feedstock to produce valuable chemicals. The catalytic reaction of methane conversion generally requires the participation of multiple molecules (such as two or three CH4 molecules, O2 , CO2 , etc.). Such complex process includes the cleavage of original chemical bonds, formation of new chemical bonds, and desorption of products. The gas phase study provides a unique arena to gain molecular-level insights into the detailed mechanisms of bond-breaking and bond-forming involved in complicated catalytic reactions. In this Review, we introduce the methane conversion catalyzed by gas phase ions containing metals and three topics will be discussed: (1) the direct coupling of methane molecules, (2) the conversion of CH4 with O2 , O3 and N2 O, and (3) the conversion of CH4 with CO2 and H2 O. The obtained mechanistic aspects may provide new clues for rational design of better-performing catalysts for conversion of methane to value-added products.

6.
Biochem Biophys Res Commun ; 608: 82-89, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35397427

RESUMO

miR-495 and miR-142-3p suppress inflammatory response. Circ_0075932 is overexpressed in the burned skin of obese individuals and is involved in the regulation of PUM2 and AuroraA kinase, thus activating the NF-kB pathway. Obesity significantly influences the length of hospital stay for paediatric burn patients, who present symptoms of slower healing or greater functional impairment. In this study, the relationship between the abovementioned genes was assessed using an obese rat burn model. Luciferase assays, real-time PCR, Western blotting and ELISA assays were performed to explore the regulatory relationships of circRNA_0075932/miR-142, circRNA_0075932/miR-495, miR-142/NLRP3, and miR-495/PUM2. Luciferase assays indicated that miR-142 effectively suppressed the expression of circRNA_0075932/NLRP3 while miR-495 inhibited the expression of circRNA_0075932/PUM2. Downregulation of circRNA_0075932 suppressed the expression of circRNA_0075932/NLRP3/PUM2 and activated the expression of miR-142/miR-495. Exosomes collected from lenti-circRNA_0075932 shRNA-treated ADSCs showed remarkable efficiency in maintaining the post heat stress (PHS)-induced dysregulation of circRNA_0075932, miR-142, miR-495, NLRP3, PUM2, AuroraB, Ika, NF-kB, TNF-α, IL-1ß, and MCP-1 in THP-1 cells. Moreover, EXO-Lenti-circRNA_0075932 shRNA significantly restored burn-induced dysregulation of circRNA_0075932, miR-142, miR-495, NLRP3, PUM2, AuroraB, Ika, NF-kB, TNF-α, IL-1ß, and MCP-1 in obese rats. In conclusion, this study confirmed that the expression of circ_0075932 in adipose tissue is evidently increased in burn-associated infection in obese rats. Moreover, the administration of circ_0075932 shRNA exhibited a therapeutic effect upon burn-associated infection in obese rats by suppressing the expression of circ_0075932.


Assuntos
Queimaduras , MicroRNAs , Animais , Queimaduras/complicações , Queimaduras/genética , Queimaduras/terapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/terapia , RNA Circular/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Ratos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
New Phytol ; 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451127

RESUMO

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.

8.
IEEE Trans Med Imaging ; PP2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320092

RESUMO

Most deep learning models for temporal regression directly output the estimation based on single input images, ignoring the relationships between different images. In this paper, we propose deep relation learning for regression, aiming to learn different relations between a pair of input images. Four non-linear relations are considered: "cumulative relation", "relative relation", "maximal relation" and "minimal relation". These four relations are learned simultaneously from one deep neural network which has two parts: feature extraction and relation regression. We use an efficient convolutional neural network to extract deep features from the pair of input images and apply a Transformer for relation learning. The proposed method is evaluated on a merged dataset with 6,049 subjects with ages of 0-97 years using 5-fold cross-validation for the task of brain age estimation. The experimental results have shown that the proposed method achieved a mean absolute error (MAE) of 2.38 years, which is lower than the MAEs of 8 other state-of-the-art algorithms with statistical significance (p<0.05) in paired T-test (two-side).

9.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1359-1369, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343165

RESUMO

UPLC-Q-TOF-MS combined with network pharmacology and experimental verification was used to explore the mechanism of acupoint sticking therapy(AST) in the intervention of bronchial asthma(BA). The chemical components of Sinapis Semen, Cory-dalis Rhizoma, Kansui Radix, Asari Radix et Rhizoma, and Zingiberis Rhizoma Recens were retrieved from TCMSP as self-built database. The active components in AST drugs were analyzed by UPLC-Q-TOF-MS, and the targets were screened out in TCMSP and Swiss-TargetPrediction. Targets of BA were collected from GeneCards, and the intersection of active components and targets was obtained by Venny 2.1.0. The potential targets were imported into STRING and DAVID for PPI, GO, and KEGG analyses. The asthma model induced by house dust mite(HDM) was established in mice. The mechanism of AST on asthmatic mice was explored by pulmonary function, Western blot, and flow cytometry. The results indicated that 54 active components were obtained by UPLC-Q-TOF-MS and 162 potential targets were obtained from the intersection. The first 53 targets were selected as key targets. PPI, GO, and KEGG analyses showed that AST presumedly acted on SRC, PIK3 CA, and other targets through active components such as sinoacutine, sinapic acid, dihydrocapsaicin, and 6-gingerol and regulated PI3 K-AKT, ErbB, chemokine, sphingolipid, and other signaling pathways to intervene in the pathological mechanism of BA. AST can improve lung function, down-regulate the expression of PI3 K and p-AKT proteins in lung tissues, enhance the expression of PETN protein, and reduce the level of type Ⅱ innate immune cells(ILC2 s) in lung tissues of asthmatic mice. In conclusion, AST may inhibit ILC2 s by down-regulating the PI3 K-AKT pathway to relieve asthmatic airway inflammation and reduce airway hyperresponsiveness.


Assuntos
Pontos de Acupuntura , Asma , Animais , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas , Imunidade Inata , Linfócitos , Camundongos
10.
Proc Natl Acad Sci U S A ; 119(14): e2114460119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344425

RESUMO

SignificancePlants evolved in an environment colonized by a vast number of microbes, which collectively constitute the plant microbiota. The majority of microbiota taxa are nonpathogenic and may be beneficial to plants under certain ecological or environmental conditions. We conducted experiments to understand the features of long-term interactions of nonpathogenic microbiota members with plants. We found that a multiplication-death equilibrium explained the shared long-term static populations of nonpathogenic bacteria and that in planta bacterial transcriptomic signatures were characteristic of the stationary phase, a physiological state in which stress protection responses are induced. These results may have significant implications in understanding the bulk of "nonpathogenic" plant-microbiota interactions that occur in agricultural and natural ecosystems.


Assuntos
Microbiota , Transcriptoma , Bactérias/genética , Microbiota/genética , Folhas de Planta/microbiologia , Plantas/microbiologia
11.
Neuroimage ; 253: 119062, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35263666

RESUMO

The fusiform face area (FFA) is a core cortical region for face information processing. Evidence suggests that its sensitivity to faces is largely innate and tuned by visual experience. However, how experience in different time windows shape the plasticity of the FFA remains unclear. In this study, we investigated the role of visual experience at different time points of an individual's early development in the cross-modal face specialization of the FFA. Participants (n = 74) were classified into five groups: congenital blind, early blind, late blind, low vision, and sighted control. Functional magnetic resonance imaging data were acquired when the participants haptically processed carved faces and other objects. Our results showed a robust and highly consistent face-selective activation in the FFA region in the early blind participants, invariant to size and level of abstraction of the face stimuli. The cross-modal face activation in the FFA was much less consistent in other groups. These results suggest that early visual experience primes cross-modal specialization of the FFA, and even after the absence of visual experience for more than 14 years in early blind participants, their FFA can engage in cross-modal processing of face information.


Assuntos
Reconhecimento Facial , Cegueira , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos
12.
Sci Adv ; 8(10): eabg8723, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263144

RESUMO

Global crop production is greatly reduced by vascular diseases. These diseases include bacterial blight of rice and crucifer black rot caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas campestris pv. campestris (Xcc). The molecular mechanisms that activate vascular defense against such pathogens remains underexplored. Here, we show that an Arabidopsis MAPK phosphatase 1 (MKP1) mutant has increased host susceptibility to the adapted pathogen Xcc and is compromised in nonhost resistance to the rice pathogen Xoo. MKP1 regulates MAPK-mediated phosphorylation of the transcription factor MYB4 that negatively regulates vascular lignification through inhibiting lignin biosynthesis. Induction of lignin biosynthesis is, therefore, an important part of vascular-specific immunity. The role of MKP-MAPK-MYB signaling in lignin biosynthesis and vascular resistance to Xoo is conserved in rice, indicating that these factors form a tissue-specific defense regulatory network. Our study likely reveals a major vascular immune mechanism that underlies tissue-specific disease resistance against bacterial pathogens in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Xanthomonas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Xanthomonas/metabolismo
13.
Cell Host Microbe ; 30(4): 489-501.e4, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247330

RESUMO

High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Estômatos de Plantas/microbiologia , Pseudomonas syringae , Água
14.
BMC Surg ; 22(1): 108, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321709

RESUMO

BACKGROUND: Acute pulmonary embolism and severe renal bleeding are two lethal postoperative complications, but there has been no report that involves both of them after mini-percutaneous nephrolithotomy. CASE PRESENTATION: A 62-year-old woman was admitted to our hospital with extremely severe hydronephrosis and multiple right renal calculi. After thorough examination, she received prone-position mini-percutaneous nephrolithotomy under spinal anaesthesia. Three days postoperatively, the patient complained of chest pain and dyspnea. Computed tomography pulmonary angiogram (CTPA) showed multiple embolisms in the left pulmonary artery and its branches. Symptoms were relieved after anticoagulant and thrombolysis therapy. On the 6th postoperative day, the patient developed shortness of breath, computed tomography angiography (CTA) showed massive hemorrhage in the right kidney, diffused contrast medium in the middle and lower part of the right kidney was seen during digital substraction angiography (DSA). Superselective right renal artery embolization (SRAE) was then applied using coil to occlude the responsible artery. The patient generally recovered under conscientious care and was approved to be discharged 26 days postoperatively. CONCLUSIONS: This is the first case that involved both acute pulmonary embolism and severe post thrombolysis renal bleeding. The importance of D-dimer in the prediction and early detection of pulmonary embolism should be noted. For post thrombolysis renal bleeding, SRAE is considered as a reliable treatment.


Assuntos
Nefrolitotomia Percutânea , Nefrostomia Percutânea , Embolia Pulmonar , Feminino , Hemorragia/etiologia , Humanos , Rim , Pessoa de Meia-Idade , Nefrolitotomia Percutânea/efeitos adversos , Nefrostomia Percutânea/efeitos adversos , Embolia Pulmonar/complicações , Embolia Pulmonar/terapia , Artéria Renal , Terapia Trombolítica/efeitos adversos
15.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1025-1038, 2022 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-35355471

RESUMO

In order to explore the antitumor effect and mechanism of different extracts of cultivated Phellinus vaninii fruit body on H22 tumor bearing mice, 150 ICR mice were randomly divided into blank group, model group, CTX group, P. vaninii water extract group, ethanol extract group, petroleum ether extract group and crude polysaccharide group. H22 liver cancer cells were used to establish a solid tumor model and the mice were sacrificed on the 10th day after administration. The spleen and thymus organ index and tumor inhibition rate were calculated, the serum levels of TNF-α, INF-γ, VEGF, and hematoxylin-eosin were detected, and the immunohistochemical staining method was used to observe the pathological changes of tumor tissues, while Western blotting was used to detect the expression of tumor-related proteins. The high-dose petroleum ether extract group showed the best tumor inhibition rate (73.21%), increased serum levels of TNF-α, IFN-γ, and VEGF, as well as significantly promoted tumor necrosis and ablation. The immunohistochemistry of the water extract group showed negative regulation, indicating an insignificant tumor suppression. Western blotting showed the apoptosis genes Caspase-3, Caspase-9 and pathway genes NF-κB and JAK were all highly expressed in each administration group compared with the model group, and their expression levels gradually decreased with increasing doses. In summary, the petroleum ether extract of P. vaninii fruit body showed a significant anti-tumor effect which is presumably mediated through the mitochondrial pathway. The metabolism of drug in the body induces activation of Caspase-3 and Caspase-9 apoptotic proteins by Bax, Bcl-2, and TNF, which further caused nuclear chromatin or DNA to condense or degrade, and subsequently destroy the normal proliferation of tumor cells, thereby inducing their apoptosis and inhibiting tumor growth.


Assuntos
Basidiomycota , Neoplasias , Animais , Apoptose , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/metabolismo
16.
J Chem Phys ; 156(5): 054704, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135264

RESUMO

The optoelectronic properties of quantum confined semiconductor nanocrystals depend critically on the band edge electron and hole levels and their exciton fine structures. Transient absorption (TA) spectroscopy has been widely used to probe the dynamics of photogenerated electrons, holes, and excitons in these materials through their state filling induced bleach of the band edge exciton transition. Such effects, in principle, reflect the band edge fine structures and are well understood for the conduction band electrons. However, the valence band hole state filling signals remain poorly understood due to the complexity of the valence band level structure and the presence of fast hole trapping in many materials. Herein, we report a study of the valence band hole state filling effect by comparing the TA spectra of CdSe quantum dots (QDs) with different degrees of hole trapping and by selective removal of the conduction band electrons to adsorbed methyl viologen molecules. We observe that in CdSe/CdS core/shell QDs with a high photoluminescence quantum yield of 81%, the valence band hole contributes to 22% ± 1% of the exciton bleach, while a negligible hole state filling signal is observed in CdSe core only QDs with a photoluminescence quantum yield of 17%. This hole state filling effect can be explained by a simplified valence band edge hole model that contains two sets of twofold degenerate hole levels that are responsible for the higher energy bright exciton and lower energy dark exciton states, respectively. Our result clarifies the TA spectral features of the valence band holes and provides insights into the nature of single hole states in CdSe-based QDs.

17.
J Chem Phys ; 156(6): 064303, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168360

RESUMO

Nitrogen (N2) fixation is a challenging task for chemists. Adsorption of N2 on transition metal (TM) sites has been identified as a prerequisite for activating the very stable N≡N triple bond in both industrial and biological processes. The importance of π back-donation (filled orbitals of TM → π* orbitals of N2) between metal sites and N2 has been well elucidated while the role of another classic orbital interaction, namely σ donation (σ orbitals of N2 → empty orbitals of TM), remains ambiguous. Herein, the size-dependent reactivity of trinuclear rhodium deuteride cluster anions Rh3Dn - (n = 0-3) toward N2 adsorption in the gas phase was investigated experimentally and theoretically. A reverse relationship that higher electron-donating ability of clusters corresponds to lower N2 adsorption reactivity was experimentally observed, which is uncommon in N2 activation by gas-phase species. Theoretical analysis revealed that the σ donation rather than the π back-donation plays a predominant role in the adsorption complexes Rh3DnN2 - and the enhanced reactivity upon D addition is ascribed to the lowered energy levels of active orbitals in Rh3Dn - as n increases. This study provides the first experimental evidence to declare the important role of σ donation and new clues for the design of reactive metal species in nitrogen fixation.

18.
Microb Ecol ; 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157108

RESUMO

Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.

19.
Cereb Cortex ; 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165684

RESUMO

The human brain can efficiently process action-related visual information, which supports our ability to quickly understand and learn others' actions. The visual information of goal-directed action is extensively represented in the parietal and frontal cortex, but how actions and goal-objects are represented within this neural network is not fully understood. Specifically, which part of this dorsal network represents the identity of goal-objects? Is such goal-object information encoded at an abstract level or highly interactive with action representations? Here, we used functional magnetic resonance imaging with a large number of participants (n = 94) to investigate the neural representation of goal-objects and actions when participants viewed goal-directed action videos. Our results showed that the goal-directed action information could be decoded across much of the dorsal pathway, but in contrast, the invariant goal-object information independent of action was mainly localized in the early stage of dorsal pathway in parietal cortex rather than the down-stream areas of the parieto-frontal cortex. These results help us to understand the relationship between action and goal-object representations in the dorsal pathway, and the evolution of interactive representation of goal-objects and actions along the dorsal pathway during goal-directed action observation.

20.
J Clin Pharm Ther ; 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218029

RESUMO

WHAT IS KNOWN AND OBJECTIVE: It is well known that high in-stent thrombotic risk due to the superimposition of a platelet-rich thrombus was considered as the main origin of major adverse cardiac events after stent implantation. The clinical management of antiplatelet therapy strategy after percutaneous coronary intervention (PCI) remains controversial. This study is sought to explore the efficacy and safety of a maintained P2Y12 inhibitor monotherapy after shorter-duration of dual antiplatelet therapy (DAPT) in these patients. METHODS: Medline, Google Scholar, Web of Science, and the Cochrane Controlled Trials Registry were searched online for retrieving eligible citations. A composite of all-cause death, myocardial infarction (MI) and stroke was defined as major adverse cardio- and cerebro-vascular events (MACCE), which is analysed as the primary efficacy endpoint. The risk of bleeding events was chosen as safety endpoint. RESULTS: Five randomized clinical trials (RCT) with 32,143 patients were finally analysed. A maintained P2Y12 inhibitor monotherapy after shorter-duration of DAPT cloud not only reduce the incidence of MACCE [odds ratios (OR): 0.89, 95% confidence intervals (CI): 0.79-0.99, p = 0.037], but also the bleeding risk (OR 0.61, 95% CI: 0.44-0.85, p = 0.003). No higher incidence of any ischaemic events, including MI, stroke or definite stent thrombosis (ST) was observed with respect to this new antiplatelet therapy option. CONCLUSIONS: A maintained P2Y12 inhibitor monotherapy after shorter-duration of DAPT was suggested as a more preferable antiplatelet therapy option in patients undergoing coronary drug-eluting stents (DES) placement. Larger and more powerful randomized trials with precise sub-analyses are still necessary for further confirming these relevant benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...