Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 395: 122612, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32361175

RESUMO

In rural domestic wastewater treatment using subsurface constructed wetland system (SFCWs), the lack of a carbon source for denitrification and limited phosphorus uptake are responsible for low removal of nitrogen and phosphorus, and a suitable substrate is therefore, necessary. Iron is an important component in nitrogen and phosphorus biogeochemical cycles. Few studies have addressed the application of iron in SFCWs. Therefore, we constructed SFCWs that used iron scraps as a substrate. Enhanced nitrification, denitrification and removal of phosphorus were observed. The large proportion of nitrite-oxidising bacteria present in CWs with iron scraps (CW-T) compared to gravel beds indicated that iron may enhance ammonium (NH4+) oxidation. More nitrate-reducing bacteria related to Fe and autotrophic denitrifying bacteria were discovered in the back zone of CW-T and these enhanced denitrification process. Phosphate (PO43-) reacted with ferrous ion (Fe2+) and ferric ion (Fe3+) to generate the precipitant. Moreover, Fe3+ reacted with water to generate iron oxide (FeOOH) that had a large adsorption capacity for phosphorus. After six months of operation, average NH4+-N, total nitrogen and total phosphorus removal rates were 66.98 ±â€¯13.37 %, 71.26 ±â€¯13.57 % and 93.54 ±â€¯6.64 %, respectively. Iron scraps can potentially be utilised in SFCWs in rural domestic wastewater treatment.

2.
Sci Total Environ ; 724: 138219, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251888

RESUMO

The release of selenium (Se) and chromium (Cr) into the environment from anthropogenic activities has posed a hazard to aquatic ecosystems. In this study, we used Chlorella vulgaris for Se/Cr bioremediation and evaluated their mutual effects on the removal efficiency. Our results found C. vulgaris highly effective in removing selenite-Se(IV) (49.5 ± 1.9%), selenate-Se(VI) (93.0 ± 0.5%), chromic nitrate-Cr(III) (89.0 ± 3.2%) and dichromate-Cr(VI) (88.1 ± 1.3%) over a 72 h period. Cr(VI) significantly impeded Se removal, particularly for selenate, due to competition between both for algal uptake, whereas Cr(III) obviously enhanced Se removal, increasing Se volatilization by ~29%. Similarly, Se significantly increase Cr removal rates, with a maximum of 94.6 ± 0.2% for the algal co-exposed to Se(IV) and Cr(III). To reduce residual pollutants in the alga, we applied combustion as a post-treatment to burn off >99% of the biomass Se for all Se treatments, whereas most of the biomass Cr (54.7-81.6%) remained in the ash at significantly higher levels (~7430 µg Cr/g DW). For toxicity, our speciation analysis found organo-Se (SeCys and SeMet) dominant in the alga exposed to Se, particularly selenite. No Cr(VI) but Cr(III) forms were detected in all Cr-exposed alga. Elemental Se disappeared from all Se-exposed alga in the presence of Cr(VI), while Se resulted in the emergence of Cr-acetate in all Cr(III)-treated alga. After combustion, mineral Se, particularly elemental Se dominated most of the ash; likewise, elemental Cr, along with Cr2O3, was found in all the ash. Overall, our research would contribute to developing a low ecotoxic algal treatment system for Se/Cr contaminated water.

3.
Environ Pollut ; 262: 114288, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155550

RESUMO

As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9-74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3-100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40-87.24 µg Cr/g DW) or adults (19.41-50.77 µg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7-94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1-1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.

4.
Sci Total Environ ; 716: 137054, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036140

RESUMO

Tidal flow constructed wetlands (TF CWs) have been considered an effective approach to treat contaminated river water, as well as a significant role in global matter cycles, especially for carbon and nitrogen. Notably, it has been thought that methane oxidation was completely catalyzed by the aerobic process, ignoring the anaerobic methane oxidation, such as the nitrite-dependent anaerobic methane oxidation (n-damo) process. In our current work, therefore, we used molecular and stable isotopes to investigate the biodiversity, quantity and potential rate of n-damo bacteria in the TF CWs located in the Xisha Wetland Park in the Yangtze River estuary, China. The results revealed that n-damo process was active in the collected soil cores, with a decreasing trend along water depths and rates ranging from 8.48 to 23.45 nmol CO2 g-1 dry soil d-1. The n-damo bacterial contributions to CH4 oxidation and N2 production in TF CWs reached 9.49-26.26% and 20.73-47.11%, respectively, suggesting that n-damo bacteria was an important nitrogen and methane sink in the TF CWs, but had been previously overlooked. The copy numbers of total bacterial 16S rRNA and pmoA genes were 1.84-11.21 × 109 and 0.59-2.72 × 106 copies g-1 ds, respectively, as the higher abundance was found in the soil at lower water levels during tidal submergence. Diverse n-damo bacterial 16S rRNA gene sequences belonged to group B, C and D were measured, and it was found that group B and C were the most frequently measured n-damo clusters in the TF CWs. In addition, nitrite was the key factor regulating the n-damo bacterial distribution in the TF CWs. This study would broaden our horizons and help us better understand the nitrogen and methane cycles in tidal ecosystems.


Assuntos
Áreas Alagadas , Anaerobiose , China , Ecossistema , Metano , Nitritos , Oxirredução , Filogenia , RNA Ribossômico 16S , Rios
5.
Sci Total Environ ; 714: 136741, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018963

RESUMO

Selenium (Se) is essential to most animals, whereas the gap between necessity and toxicity is narrow. Our previous work showed constructed wetlands were a promising solution to Se contamination in aquatic habitats. This study further examined effects of organic amendments and hydrologic regimes on Se removal by constructed wetlands. Our results suggest the removal efficiency exceeded 94% within 8 days for the systems with moderate and low organic carbon contents in the substrate, as a 98% removal of Se was obtained in three weeks for the system subjected to the 2-day wet/dry cycle. To mimic field wetlands, a litter layer was added to the cattail treatment system, which reduced waterborne Se much more rapidly than control, achieving a 77% removal of Se within 4 days. XAS results show all sediment Se was transformed to Se0 in the presence of litter, as SeMet (47%) dominated the Se adsorbed by the litter. The findings indicate the Se removal capacity of a constructed wetland would improve over time, especially via Se volatilization into the atmosphere and Se stabilization in the sediment with litter accumulating at the surface. Another mesocosm experiment showed the cattail floating system effectively removed Se, particularly selenate, by 99% in 48 h. To confirm that high performance, seven constructed wetland types were set up for comparison. The results show the cattail floating system was most effective in Se removal (93-100% at around 35 °C in summer and 51-100% at about 5 °C in winter). More research is needed to test the floating system under more field conditions and investigate the biomagnification and biotransformation of the removed Se along food chains. Seven constructed wetland types were set up for comparison.


Assuntos
Purificação da Água , Selênio , Typhaceae , Áreas Alagadas
6.
Environ Pollut ; 260: 114048, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32014748

RESUMO

Selenium (Se) is an essential micronutrient for animals with a narrow margin between essentiality and toxicity. Se toxicity is largely related to inorganic forms of Se in soil, i.e., selenite and selenate that enter food chains through plant uptake, threatening higher trophic level organisms. This experiment investigated effects of earthworm activity on Se bioavailability in soil and the subsequent plant uptake, using earthworm Eisenia fetida and bean plant Phaseolus vulgaris L, both exposed to either selenite or selenate at 1 or 4 mg Se kg-1 for 16 weeks. Plants took up selenate (up to 221-fold) faster than selenite, with up to 84% of the Se rapidly transported to shoots. In the presence of earthworms, Se accumulation obviously increased for selenate-supplied plants, leading to an up to 4% increase in Se translocation factor for all treatments except for 1 mg kg-1 selenite treatment. Earthworms also concentrated Se faster in tissues (up to 274 mg kg-1 DW) at exposure to selenate. For Se toxicity, Se speciation analysis was conducted on the plants and earthworms using XAS. Compared to worm-free treatments, the percentage of organo-Se, i.e., SeMet and CysSeSeCys, increased in beans (up to 34%) in the presence of earthworms for selenate, while the elemental Se portion was significantly reduced or absent, opposite to the results for selenite. Surprisingly, elemental Se (up to 65%) dominated earthworms, regardless of the form of Se supplied. In conclusion, earthworms clearly enhanced Se uptake and translocation in plants, leading to elevated Se levels in shoots. To prevent resulting hazards to humans and other animals, caution should be taken while consuming the shoots, particularly beans, harvested from the Se contaminated soil where earthworm activity is high. Finally, the significant reduction in soil Se suggests phytoextraction of Se from the soil could be improved using earthworms as an aid to plants.

7.
Environ Sci Pollut Res Int ; 27(1): 636-646, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31808093

RESUMO

Biofiltration is one kind of common technology used for treating micro-polluted brackish aquaculture wastewater. Based on the characteristics of actual water quality, a novel two-stage biofiltration system was set up to reduce potential nutrient pollution brought by the frequent exchange of water in brackish pond aquaculture. Zeolite was selected as filtration media for the first stage and pyrite mixed with a small amount of sulfur for the second stage. Apart from the adsorption of nutrients exerted by these natural minerals, biofilm played a leading role in nutrient removal. The surface and internal pore of zeolite-sheltered nitrifiers and sulfur-containing compounds enhanced autotrophic denitrification. It was found that ammonia adsorption capacity of zeolite was reduced by nearly 58% when salinity was increased to 1.5%, while phosphate adsorption capacity of pyrite was hardly influenced and systematic hydraulic retention time (HRT) of 24 h was proven appropriate, 9.6 h and 14.4 h for the two stages, respectively. Meanwhile, removal efficiency of 96.5% for NH4+-N and 92.1% for total inorganic nitrogen (TIN) was achieved under this condition. The analysis of microbial community of biofilm indicated that dominant genera responsible for nitritation and nitration on the surface of zeolite were Nitrosomonas and Nitrospira, respectively. Dominant genera responsible for autotrophic denitrification on the surface of pyrite and sulfur were both Thiobacillus. In addition, Ferritrophicum, related to the iron-oxidizing bacterium, also coexisted due to biological oxidation of pyrite. Long-term operation verified applicability and stability of this two-stage biofiltration system for brackish aquaculture wastewater purification.

8.
Bioresour Technol ; 300: 122651, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31887578

RESUMO

Three ecological floating beds (EFBs) with different additional electron donors including sodium thiosulfate, mixed electron donors of sodium thiosulfate and sodium acetate and without additional electron donors were established to compare the differences of nitrogen removal efficiency, nitrous oxide emission, microbial community and functional gene between autotrophic and mixotrophic denitrification. Results showed denitrification efficiency was nearly 100% in both autotrophic and mixotrophic process when electron donors were sufficient while that ranged from 4 to 43% without additional electron donors. Sodium acetate addition could effectively decrease sulfate concentration in effluent and nitrogen oxide flux. In addition, high-throughput sequencing analysis revealed autotrophic denitrifying bacteria were dominant in autotrophic denitrification while autotrophic, facultative and heterotrophic denitrifying bacteria coexisted in mixotrophic denitrification, and there was no dominant genus. For EFB with mixed external autotrophic and heterotrophic electron donors, it can not only achieve better denitrification efficiency, but also reduce the emission of nitrous oxide.


Assuntos
Desnitrificação , Óxido Nitroso , Processos Autotróficos , Reatores Biológicos , Nitratos , Sulfatos , Tiossulfatos
9.
Bioresour Technol ; 292: 121944, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31444120

RESUMO

Ecological floating bed (EFB) is a green technology for treatment of micro-polluted wastewater. However, its nitrogen removal efficiency is still unsatisfactory. In this study, two EFBs with additional carbon source were established to explore biofilm carriers addition on nitrogen removal and greenhouse gas (GHG) emissions at different C/N ratios and temperatures. Results showed that biofilm carriers addition increased nitrification and nitrogen removal efficiencies in EFB, and more denitrifying and nitrifying bacteria were attached to the biofilm carriers. Higher N2O and CH4 emissions were found in control EFB without biofilm carriers addition which was consistent with higher nitrite accumulation. In addition, high-throughput sequencing analysis revealed that adding biofilm carriers could improve the richness and diversity of biological communities. For EFB with additional carbon source treating secondary effluent, adding biofilm carrier can obtain higher TN removal efficiency and lower greenhouse gas emission.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Biofilmes , Reatores Biológicos , Desnitrificação
10.
Environ Sci Pollut Res Int ; 26(23): 23696-23706, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203550

RESUMO

Excessive nitrogen accumulated from wastewater with low C/N ratio is a new threat to water ecosystem. In this study, surface flow constructed wetland (SFCW) and floating treatment wetland (FTW) planted with Iris pseudacorus were set in parallel for nitrogen removal. The nitrogen removal efficiencies and pathways, as well as the abundance and functional diversities of the microbial community, were investigated. The results demonstrated that SFCW generally had better nitrogen removal performance than FTW did over four seasons. The average total nitrogen removal efficiency was 66.0% and 43.8% in SFCW and FTW, respectively. The plant uptake played a vital role in nitrogen reduction, which accounted for 29.3% and 7.7% of the total removed nitrogen in SFCW and FTW, respectively. A combination of high-throughput sequencing and quantitative polymerase chain reaction analysis revealed that the two wetland systems had complete nitrogen cycling, and the narG gene was the dominant nitrogen-transformation functional gene in both systems. More abundant denitrifying genes in SFCW than in FTW were also responsible for higher removal capacity of nitrogen. The results suggest that the planting pattern of wetland vegetation has an important impact on nitrogen removal efficiency by influencing the plant absorption and the development of microbial communities.


Assuntos
Iris (Planta)/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Desnitrificação , Ecossistema , Nitrogênio/análise , Ciclo do Nitrogênio , Plantas/metabolismo , Estações do Ano , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise
11.
Bioresour Technol ; 285: 121313, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30959388

RESUMO

A constructed wetland (CW) was established to explore the influence of carbon addition (glucose or sodium acetate) on nitrogen removal and greenhouse gas (GHG) emissions at chemical oxygen demand to nitrogen ratios (COD/Ns) of 0, 4, 7. Results showed that the type of carbon source and COD/N significantly influenced the CW performance, in which the electrons transfer determined the regulation of denitrification, methanogenesis and respiration. Higher N2O emissions were consistent with higher nitrite accumulation at low COD/N because of electrons competition. The residual carbon source after near-complete denitrification could be further utilized by methanogenesis. Sodium acetate was superior to glucose in promoting denitrification and reducing global warming potential (GWP). In addition, bacteria sequencing and functional genes confirmed the important role of the type of carbon source on controlling nitrogen removal, carbon consumption and GHG emissions in microbial communities.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carbono , Desnitrificação , Elétrons , Nitrogênio
12.
Sci Total Environ ; 670: 200-209, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30903893

RESUMO

Hydroponic root mats (HRMs) are a green technology for various wastewaters purification. However, plants wilting will inevitably reduce the purification efficiency of HRMs. Harvesting as an important way of plant management for a better understanding of sustainability of HRMs has always been highly controversial. The goal of this study was to investigate the impacts and sustainability of harvesting on nitrogen removal and greenhouse gases (CH4, N2O) emissions of the two kinds of enhanced hydroponic root mats: autotrophic hydroponic root mat (AHRM) and heterotrophic hydroponic root mat (HHRM) for treating secondary effluent. The results showed that harvesting temporarily decreased nitrogen removal efficiency of the two systems, and removal efficiency recovered quickly because of the existence of external electron donors. The effects of harvesting are ordered as: HHRM > AHRM, NO3--N > NH4+-N. Increasing C/N, S/N would reduce the impact of temperature on harvesting systems. Harvesting also increased the emission of greenhouse gases, and increasing C/N(=6), S/N(=1.1) could significantly reduce greenhouse gases emission of the harvesting systems at low temperature. In addition, composition analysis of the shoots of the harvested plants was also conducted, and the results showed that N contents of growing shoots were significantly higher than that of withered shoots. In order to make the hydroponic root mats sustainable, harvesting before the plants wilt is more effective in removing nitrogen from the system permanently and maintain a sustainable system.


Assuntos
Biodegradação Ambiental , Gases de Efeito Estufa/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Processos Autotróficos , Desnitrificação , Processos Heterotróficos , Hidroponia , Águas Residuárias , Áreas Alagadas
13.
Environ Pollut ; 245: 941-949, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30682750

RESUMO

Selenium (Se) is an essential micronutrient for animals with a relatively narrow margin between essentiality and toxicity. To evaluate Se removal efficiency by a constructed wetland treatment system and its potential eco-risk, a floating-leaved macrophyte system was constructed, consisting of three main trophic levels. Over 21-d treatment, water Se concentration was gradually reduced by 40.40%, while 24.03% and 74.41% of the removed Se were found in the plant Nymphoides sp. and sediment, respectively. Among plant tissues, roots accumulated the highest Se level, although the greatest total Se was found in stems, followed by leaves, roots and rhizomes. X-ray absorption spectroscopy revealed that 82.65% of the absorbed selenite by the plants was biotransformed to other forms, as organo-Se species accounted for 45.38% of the Se retained in the sediment, which was primarily responsible for the entry of Se into the detritus food chain. The proportion of organo-Se compounds increased with trophic levels from sediments to fish, indicating, instead of direct uptake of selenite, the food chain transfer and biotransformation of Se may serve as a key exposure route for Se in aquatic organisms. When exposed to organo-Se compounds, i.e., SeCys and SeMet, the plants, shrimp and fish tended to accumulate more Se. However, the greater trophic transfer factor was obtained for selenate, leading to higher Se levels accumulated in fish. Overall, in addition to key mechanisms involved in Se removal, our research also provides a much better understanding of the potential eco-risk that may be posed by the floating-leaved plant system for bioremediation of Se via food chain transfer and biotransformation, paving the way for a low eco-toxic treatment system for Se remediation.


Assuntos
Asteraceae/crescimento & desenvolvimento , Sedimentos Geológicos/química , Selênio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Áreas Alagadas , Animais , Asteraceae/metabolismo , Biodegradação Ambiental , Biotransformação , China , Peixes/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/microbiologia , Modelos Teóricos , Selênio/metabolismo , Caramujos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Bioresour Technol ; 271: 298-305, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30290322

RESUMO

Simultaneous nitrification, anammox and denitrification (SNAD) process was developed in subsurface flow constructed wetlands (SFCWs) to treat polluted surface water. The effects of vegetation, hydraulic retention time (HRT), C/N, and influent nitrogen forms on nitrogen removal and microbial communities were investigated. Results showed that denitrification- and anammox-dominant SNAD corresponded to nitrate- and ammonia-dominant influent, respectively, and both could achieve more efficient nitrogen removal in planted SFCWs than the unplated. These higher efficiencies were due to the microbial growth, organic carbon release, oxygen supply and plant uptake promoted by vegetation. The electron donors accelerated denitrification but inhibited ammonia oxidation with deficient oxygen. Anammox contributed to nitrogen removal of 27.34% under oxygen-limited conditions without vegetation. Anammox combined with denitrification and plant uptake were over 90% in planted SFCWs. For the investigated factors, the ammonia, nitrate and C/N were the most significant ones influencing the microbial communities, further nitrogen removal pathways and performances.


Assuntos
Áreas Alagadas , Amônia/química , Desnitrificação , Nitrificação , Nitrogênio/química , Oxirredução , Oxigênio/química
15.
Chemosphere ; 215: 8-14, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300809

RESUMO

Ecological soil systems (ESSs) are usually used to remove nitrogen from wastewater. Due to the poor denitrification performance of traditional ecological soil systems (ESSs), this study proposes a two-stage water distribution system to improve the nitrogen removal. The effects of different distribution ratios on the system treatment effect were studied in an intermittent operation mode. After determining the optimal distribution ratio and intermittent operation conditions, the dynamics of system inflow, outflow, and nitrogen removal were monitored. Theoretical analysis of the denitrification mechanism was carried out. The results showed that the optimum water distribution ratio was 2: 1, and a mean total nitrogen removal rate of 60.42% was achieved, which is 23.09% greater than that is typically achieved by the single-section ecological system. Under optimum distribution ratio conditions, the system also demonstrated effective removal of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH4+-N), allowing the effluent to satisfy China's urban sewage treatment plant level B emission standards.


Assuntos
Desnitrificação , Ecossistema , Nitrogênio/isolamento & purificação , Solo/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
16.
J Hazard Mater ; 365: 546-554, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30469034

RESUMO

In developing an algal treatment system, selenium (Se) removal efficiency by Chlorella vulgaris was evaluated under various conditions such as Se concentration, algal density, temperature and pH. A maximum removal efficiency plateau of ∼90% was observed between 1000-3000 µg Se/L while the tolerance of Se toxicity was found at 6000 µg Se/L. C. vulgaris of 0.75 g DW/L showed the highest removal efficiency (84%), and volatilization was dominant below 1.37 g DW/L. Se volatilization was two times higher at 25 °C than at 20 °C in the first 24 h. Moreover, the highest removal efficiency (77%) was obtained at pH 8.0, compared to 66.5% at pH 6.5 and 40% at pH 10.0. To prevent ecotoxicity, Se laden algae were further burned to ashes or filtered out by Anodonta woodiana. After burning, biomass Se was reduced by 99%, with organo-Se entirely converted into inorganic Se, lowering Se bioavailability. A. woodiana removed 54% of Se in 24 h, leading to Se bioaccumulation in soft tissues, which may serve as dietary Se supplements for human health. Our results suggest the cleanup of Se-contaminated water from either agricultural runoff or industrial discharge could be achieved using an algal treatment system with minimum potential ecotoxicity.

17.
Chemosphere ; 217: 825-832, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30458418

RESUMO

In our previous studies, Chlorella vulgaris had proven highly efficient in removing selenium (Se) from water, while the disposal of Se containing in algal biomass was still an issue of concern. Firstly, this research suggests algal Se could be released back to water, posing risks to aquatic wildlife. Thus, we further explored the possibility of using C. vulgaris to remove Se and produce lipid and hydrogen simultaneously. Our results show the higher percentage of saturated fatty acids, especially palmitic acid, was found in the sulfur (S) deprived algae exposed to either selenate or selenite, although the highest lipid content (21.9%) was found in the selenite treated algae in full BG11 medium. In addition, compared with the Se free algae, hydrogen production rate was 2.1- and 4.3-fold higher for the selenate and selenite treated algae, respectively. Se removal efficiency achieved by the selenite treated algae through accumulation and volatilization was 2.3-fold higher than the selenate treatment under hypoxic condition with S deprived, which is in contrast to the results obtained under aerobic conditions.


Assuntos
Chlorella vulgaris/metabolismo , Hidrogênio/metabolismo , Lipídeos/biossíntese , Selênio/farmacocinética , Biomassa , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Enxofre , Volatilização , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
18.
Huan Jing Ke Xue ; 39(3): 1350-1356, 2018 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965483

RESUMO

Biological denitrification is now one of the most widely applied techniques to remove nitrogen from the aquatic environment, and mixotrophic denitrification has gained attention as it takes the characteristics of both heterotrophic and autotrophic denitrification. This study investigated the biological denitrification efficiency and the bacterial community structure of sludge sampled from a mixotrophic denitrification reactor, before and after adding a certain amount of phosphate. The results showed that the bacteria have the capability of denitrification even without phosphorus, but the addition of phosphorus could significantly improve the biomass and the denitrification activity. After phosphate was added, the autotrophic and heterotrophic denitrification activity increased to 0.056 mg·(L·min·g)-1 and 0.232 mg·(L·min·g)-1 on N/VSS, which was 2.9 and 3.9 times that of the sludge activity before phosphorus addition, respectively. The bacterial community structure illustrated that the denitrifiers increased remarkably from 13.47% to 44.82% and that the dominate bacteria have also changed. Meanwhile, the growth of autotrophic, heterotrophic, and mixtrophic bacteria were all improved significantly after phosphorus was added.


Assuntos
Bactérias/efeitos dos fármacos , Desnitrificação , Nitrogênio/isolamento & purificação , Fósforo/farmacologia , Esgotos/microbiologia , Processos Autotróficos , Reatores Biológicos
19.
Environ Pollut ; 242(Pt A): 73-81, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29960927

RESUMO

Selenium (Se) is an essential micronutrient for animals and humans with a relatively narrow margin between nutritional essentiality and potential toxicity. Even though our previous studies have demonstrated algae could efficiently remove Se, mainly through volatilization, concern is raised about eco-risks posed by the remaining Se in algae. Here, Sinanodonta woodiana was investigated as a biofilter for the removal of Se-containing Chlorella vulgaris and for its potential risk to human health. Our results suggest filtration rates of S. woodiana were independent of Se levels in algal biomass, with a removal efficiency of between 60 and 78%. However, Se concentrations accumulated in mussels were significantly correlated with algal-borne Se levels, with a dietary assimilation efficiency ranging from 12% to 46%. Thus, a pilot biofiltration system was set up to assess uptake and depuration processes. The system was found to efficiently remove Se laden algae through the uptake by mussels, while 21% of Se in mussels could be depurated in 6 days. Among tissues, gills accumulated the highest Se concentration after assimilating algal-borne Se but shed Se compounds in the fastest pace during depuration. Health risks posed by consumption of mussels exposed to different sources of Se were further assessed. S. woodiana accumulated the highest Se concentration after exposure to waterborne SeMet, followed by dietary Se, selenite and control. The relatively higher Se levels were found in gills for all the treatments. After boiling, the most common method of cooking mussels, the greatest reduction in Se concentration occurred in mantle for the control and dietary Se groups and in muscle for the SeMet and selenite treatments. Therefore, within the safe limits, Se-containing mussels can be consumed as a dietary supplement. Overall, our research suggests incorporation of mussels into an algal treatment system can improve Se removal efficiency and also provide financial incentives for practitioners.


Assuntos
Chlorella vulgaris/metabolismo , Contaminação de Alimentos/análise , Selênio/metabolismo , Unionidae/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental , Cadeia Alimentar , Brânquias/metabolismo , Humanos , Medição de Risco
20.
Sci Total Environ ; 643: 127-133, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936156

RESUMO

Autotrophic and mixotrophic denitrification, two approaches of biological denitrification, have drawn more and more attention among the techniques to remove nitrogen from the aquatic environment. This study investigated the influence of phosphorus on the denitrification performance and bacterial community structure in the autotrophic and mixotrophic denitrification reactors. The activity test was applied to evaluate the variation of denitrification activity of autotrophic and mixotrophic sludge before and after phosphorus addition. High-throughput sequencing was used to analyze the change of bacterial community structure. The results showed that NO3--N removal efficiency of autotrophic and mixotrophic denitrification process increased by 40 and 35%, respectively, after phosphorus addition. The sludge denitrification activity of autotrophic and mixotrophic sludge was enhanced significantly. And phosphorus addition could greatly improve the proportion of denitrifying bacteria in both autotrophic (from 11.83 to 64.31%) and mixotrophic denitrifying sludge (from 13.59 to 45.12%). Overall, phosphorus addition could greatly improve the autotrophic and mixotrophic denitrification ability in the phosphorus deficient surface water.


Assuntos
Desnitrificação , Fósforo , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Nitratos , Nitrogênio , Esgotos , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA