Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Cell Mol Med ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33939274

RESUMO

Oxidative stress critically influences carcinogenesis and the progression of melanoma, and aggressive malignant melanoma activity is due to its high metastatic ability. Some findings in several cancer cell lines have indicated that mGPDH, a component of the mitochondrial respiratory chain, also modulates oxidative stress. However, the role of mGPDH in melanoma remains elusive. Here, we report that the mGPDH protein level is decreased in human skin melanoma compared to normal skin and decreased in metastatic melanoma compared to primary melanoma. Our in vivo and in vitro experiments indicated that mGPDH depletion accelerated melanoma migration and invasion without affecting proliferation or apoptosis. Mechanistically, we found elevated NRF2 protein levels in human skin melanoma and mGPDH-knockout (ko) metastatic xenografts in the lungs of nude mice. Moreover, in A375 melanoma cells, the loss of mGPDH-induced NRF2 expression but did not affect NRF2 protein degradation. Additionally, melanoma metastasis induced by the loss of mGPDH was rescued by the further down-regulation of NRF2 in vivo and in vitro. Consistently, mGPDH overexpression (oe) depressed NRF2 expression and attenuated the malignant properties of melanoma cells. In conclusion, our findings suggest that mGPDH suppresses melanoma metastasis by inhibiting NRF2 and downstream oxidative signals, highlighting the therapeutic potential of mGPDH for melanoma treatment.

2.
Nucleic Acids Res ; 49(7): 3719-3734, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744973

RESUMO

N6-methyladenosine (m6A) is the most pervasive modification in eukaryotic mRNAs. Numerous biological processes are regulated by this critical post-transcriptional mark, such as gene expression, RNA stability, RNA structure and translation. Recently, various experimental techniques and computational methods have been developed to characterize the transcriptome-wide landscapes of m6A modification for understanding its underlying mechanisms and functions in mRNA regulation. However, the experimental techniques are generally costly and time-consuming, while the existing computational models are usually designed only for m6A site prediction in a single-species and have significant limitations in accuracy, interpretability and generalizability. Here, we propose a highly interpretable computational framework, called MASS, based on a multi-task curriculum learning strategy to capture m6A features across multiple species simultaneously. Extensive computational experiments demonstrate the superior performances of MASS when compared to the state-of-the-art prediction methods. Furthermore, the contextual sequence features of m6A captured by MASS can be explained by the known critical binding motifs of the related RNA-binding proteins, which also help elucidate the similarity and difference among m6A features across species. In addition, based on the predicted m6A profiles, we further delineate the relationships between m6A and various properties of gene regulation, including gene expression, RNA stability, translation, RNA structure and histone modification. In summary, MASS may serve as a useful tool for characterizing m6A modification and studying its regulatory code. The source code of MASS can be downloaded from https://github.com/mlcb-thu/MASS.

3.
Bioorg Chem ; 110: 104789, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33714760

RESUMO

TD-DFT quantum calculation was performed to predict and/or illustrate the electronic transition, the related absorption and emission maxima of some pyrrole-difluoroboron derivatives with different electron donor-acceptor unit or π-conjugated degree. Upon the calculated results, a new near infrared (NIR) fluorophore (abbreviated as TPBD-BP) was designed and fabricated through linking triphenylamine and pyrrole-difluoroboron units to benzothiadiazole (BTD) backbone. The fluorescence of TPBD-BP in solid state centered at 932 nm, which was 985 nm for TPBD-BP nanoparticles (TPBD-BP dots) encapsulated in PEG-6000. The fluorescence of TPBD-BP in both solid state and dots exhibited off-peak tail emission to NIR-II region (extended to 1300 nm). The TPBD-BP dots showed excellent water solubility, biocompatibility and aggregation induced emission (AIE), which was suitable to be applied in vivo imaging. NIR-II emission signal of TPBD-BP dots can be observed in the reproductive organ of normal nude mice after tail vein injection. This attractive combination of computational and experimental investigation would help to develop new-typed small-molecular NIR fluorophores.

4.
J Virol ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727331

RESUMO

Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge.IMPORTANCESARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33631424

RESUMO

Pseudouridine (Ψ) is the most prevalent post-transcriptional RNA modification and is widespread in small cellular RNAs and mRNAs. However, the functions, mechanisms and precise distribution of Ψs (especially in mRNAs) still remain largely unclear. The landscape of Ψs across the transcriptome has not yet been fully delineated. Here, we present a highly effective model based on a convolutional neural network (CNN), called PULSE, to analyze large-scale profiling data of Ψ sites and characterize the contextual sequence features of pseudouridylation. PULSE, consisting of two alternatively stacked convolution and pooling layers followed by a fully-connected neural network, can automatically learn the hidden patterns of pseudouridylation from the local sequence information. Extensive validation tests demonstrated that PULSE can outperform other state-of-the-art prediction methods and achieve high prediction accuracy, thus enabling us to further characterize the transcriptome-wide landscape of Ψ sites. We further showed that the prediction results derived from PULSE can provide novel insights into understanding the functional roles of pseudouridylation, such as the regulations of RNA secondary structure, codon usage, translation, and RNA stability, and the connection to single nucleotide variants.

6.
BMC Plant Biol ; 21(1): 93, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579187

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play important roles in essential biological processes. However, our understanding of lncRNAs as competing endogenous RNAs (ceRNAs) and their responses to nitrogen stress is still limited. RESULTS: Here, we surveyed the lncRNAs and miRNAs in maize inbred line P178 leaves and roots at the seedling stage under high-nitrogen (HN) and low-nitrogen (LN) conditions using lncRNA-Seq and small RNA-Seq. A total of 894 differentially expressed lncRNAs and 38 different miRNAs were identified. Co-expression analysis found that two lncRNAs and four lncRNA-targets could competitively combine with ZmmiR159 and ZmmiR164, respectively. To dissect the genetic regulatory by which lncRNAs might enable adaptation to limited nitrogen availability, an association mapping panel containing a high-density single-nucleotide polymorphism (SNP) array (56,110 SNPs) combined with variable LN tolerant-related phenotypes obtained from hydroponics was used for a genome-wide association study (GWAS). By combining GWAS and RNA-Seq, 170 differently expressed lncRNAs within the range of significant markers were screened. Moreover, 40 consistently LN-responsive genes including those involved in glutamine biosynthesis and nitrogen acquisition in root were identified. Transient expression assays in Nicotiana benthamiana demonstrated that LNC_002923 could inhabit ZmmiR159-guided cleavage of Zm00001d015521. CONCLUSIONS: These lncRNAs containing trait-associated significant SNPs could consider to be related to root development and nutrient utilization. Taken together, the results of our study can provide new insights into the potential regulatory roles of lncRNAs in response to LN stress, and give valuable information for further screening of candidates as well as the improvement of maize resistance to LN stress.

7.
Acta Pharmacol Sin ; 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495516

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 µM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.

8.
Biomaterials ; 269: 120625, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33395579

RESUMO

Anterior cruciate ligament (ACL) reconstruction is the recommended treatment for ACL tear in the American Academy of Orthopaedic Surgeons (AAOS) guideline. However, not a small number of cases failed because of the tunnel bone resorption, unsatisfactory bone-tendon integration, and graft degeneration. The biomaterials developed and designed for improving ACL reconstruction have been investigated for decades. According to the Food and Drug Administration (FDA) and the International Organization for Standardization (ISO) regulations, animal studies should be performed to prove the safety and bioeffect of materials before clinical trials. In this review, we first evaluated available biomaterials that can enhance the healing outcome after ACL reconstruction in animals and then discussed the animal models and assessments for testing applied materials. Furthermore, we identified the relevance and knowledge gaps between animal experimental studies and clinical expectations. Critical analyses and suggestions for future research were also provided to design the animal study connecting basic research and requirements for future clinical translation.

9.
Glia ; 69(5): 1292-1306, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33492723

RESUMO

Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33300645

RESUMO

Chemists are always seeking new methods to construct porous lattice frameworks from simple motifs. To date, the most common tectons of reported porous frameworks are predesigned multi-armed scaffolds with C3, C4 or C6 symmetry. Linear two-armed tectons with C2 symmetry are easier to synthesize but cannot form porous architectures by themself, unless combined with tectons of different symmetry. Herein we report a linear ionic molecule that assembles into a supramolecular nano-tunnel structure through synergy of trident-type ionic interactions and π-π stacking interactions. The nano-tunnel crystal exhibits anisotropic guest adsorption behavior. The material shows good thermal stability and undergoes multi-stage single-crystal-to-single-crystal phase transformations to a nonporous structure on heating. The material exhibits remarkable chemical stability in both acidic and basic conditions, which is rarely observed in supramolecular organic frameworks and is often related to structures with designed hydrogen bonding interactions. Because of the high polarity of the tunnels, this molecular crystal also shows a large CO2 adsorption capacity while excluding other gases at ambient temperature, leading to high CO2 /CH4 selectivity. The aggregation-induced emission feature of the molecules gives the bulk crystals vapochromic behavior.

12.
BMJ Open ; 10(11): e040939, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33234648

RESUMO

INTRODUCTION: Postoperative delirium (POD) is prevalent in patients after major surgery and is associated with adverse outcomes. Several studies have reported that dexmedetomidine, a highly selective α2-adrenergic receptor agonist, can decrease the incidence of POD. However, neurosurgical patients are usually excluded from previous studies. The present study was designed to investigate the impact of prophylactic use of low-dose dexmedetomidine on the incidence of POD in patients after intracranial operation. METHODS AND ANALYSIS: This is a multicentre, randomised, double-blinded and placebo-controlled trial. Seven hundred intensive care unit admitted patients after elective intracranial operation for brain tumours under general anaesthesia are randomly assigned to the dexmedetomidine group or the placebo group with a 1:1 ratio. For patients in the dexmedetomidine group, a continuous infusion of dexmedetomidine will be started at a rate of 0.1 µg/kg/hour immediately after enrolment on the day of operation and continued until 08:00 on postoperative day 1. For patients in the placebo group, normal saline will be administered at the same rate as in the dexmedetomidine group. The patients will be followed up for 28 days after enrolment. The primary endpoint is the incidence of POD, which is assessed two times per day using the Confusion Assessment Method for the intensive care unit (ICU), during the first 5 postoperative days. The secondary endpoints include the incidence of dexmedetomidine-related adverse events and non-delirium complications, the length of stay in the ICU and hospital and all-cause 28-day mortality after the operation. ETHICS AND DISSEMINATION: The study protocol was approved by the Institutional Review Board of Beijing Tiantan Hospital Affiliated to Capital Medical University (No KY2019-091-02) and registered at ClinicalTrials.gov. The results of the trial will be presented at national and international conferences relevant to subject fields and submitted to international peer-reviewed journals. TRIAL REGISTRATION NUMBER: Trial registration number: NCT04399343; Pre-results.

13.
Cell Biochem Biophys ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33151473

RESUMO

Tripartite motif containing 44 (TRIM44) has been reported to regulate various biological effects in malignant cancers and matrix Metalloproteinases has been demonstrated to be associated with cancer cell migration and invasion. Nonetheless, the expression and molecular mechanism of TRIM44 in colorectal cancer (CRC) remain rarely known. TRIM44 was overexpressed or knocked down in CRC cells. Subsequently, the effects of TRIM44 on cell migration and invasion as well as underlying molecular mechanisms were detected. Data showed that TRIM44 was highly expressed in CRC cell lines. Downregulation of TRIM44 inhibited the cell viability, migration, and invasion in SW-480 cells. In addition, overexpression of TRIM44 enhanced the expression of NF-κB and CXCR4, and enhanced the binding between NF-κB and CXCR4 promoter region. In summarize, TRIM44 may serve as a potential target for CRC diagnosis and progression.

14.
BMJ Open ; 10(11): e036809, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177132

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterised by a fibrotic histological pattern found in usual interstitial pneumonia. Its causes, pathogenesis, clinical phenotype and molecular mechanisms are poorly defined. Large-scale, multicentre studies are warranted to better understand IPF as a disease in China, its associated risk factors, clinical characteristics, diagnosis, disease progression and treatment. METHODS AND ANALYSIS: The Idiopathic Pulmonary Fibrosis Registry China Study (PORTRAY) is a prospective, multicentre registry study of patients with IPF in China. Eight hundred patients will be enrolled over a 36-month period and followed for at least 3 years to generate a comprehensive database on baseline characteristics and various follow-up parameters including patient-reported outcomes. Biological specimens will also be collected from patients to develop a library of blood, bronchoalveolar lavage fluid and lung biopsy samples, to support future research. As of 15 December 2019, 204 patients from 19 large medical centres with relatively high IPF diagnosis and treatment rates had been enrolled. Patient characteristics will be presented using descriptive statistics. The Kaplan-Meier method will be used for survival analyses. Repeated measures will be used to compare longitudinal changes in lung function, imaging and laboratory tests. Results following analysis have been projected to be available by July 2025. ETHICS AND DISSEMINATION: The study protocol was reviewed and approved by the Institutional Review Board from all the study sites currently recruiting patients. Study results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT03666234.

15.
Rev Sci Instrum ; 91(9): 094708, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003804

RESUMO

In this paper, we present a linewidth locking method to control the microwave power in optically pumped cesium-beam frequency standards. The responses of optically pumped cesium-beam tubes and classical cesium-beam tubes are analyzed and compared against the power of the microwave field. Due to the wide probability distribution of atomic velocity resulting from the optical state preparation and detection, the linewidth of the Ramsey pattern is sensitive to the microwave power. The results can be used to control the microwave power instead of using the traditional extremum method. The advantages of the new method are discussed, and we named this new method the linewidth locking method. When the microwave power is well controlled at a low level by the linewidth locking method, the frequency stability of cesium-beam clocks will be improved to a certain degree for the reduction of the Ramsey pattern linewidth. In experiment, using the linewidth locking method, the Allan deviation of our optically pumped cesium-beam frequency standard is 2.64×10-12/τ and continues until the averaging time exceeds 1 × 105 s, which is 17% better than that using the traditional extremum method.

16.
Front Pharmacol ; 11: 546825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041792

RESUMO

Objective: The aim of this study was to eluc\idate the preventive and therapeutic effects and the underlying mechanisms of Huoxue Huatan Decoction (HXHT) on myocardial ischemia/reperfusion (I/R) injury in hyperlipidemic rats. Methods: An I/R model was established in hyperlipidemic Wistar rats. After 4-8 weeks of HXHT treatment, the physical signs of rats were observed. Lipid metabolism, myocardial enzyme spectrum, cardiac function, myocardial histomorphology, and mitochondrial biosynthesis were investigated by a biochemical method, ultrasonography, electron microscopy, pathological examination, real-time PCR, and Western blot. Results: HXHT can affect lipid metabolism at different time points and significantly reduce the levels of cholesterol (CHO), triglyceride (TG), high-density lipid-cholesterol (HDL-C), and low-density lipid-cholesterol (LDL-C) in hyperlipidemic rats (P < 0.05 or P < 0.01); it can significantly reduce the levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), reduce the myocardial infarct size and myocardial ischemic area, and improve cardiac function. The results of myocardial histomorphology showed that HXHT could protect myocardial cells, relieve swelling, reduce the number of cardiac lipid droplets, and improve myocardial mitochondrial function. HXHT could significantly increase the levels of total superoxide dismutase (T-SOD) and succinate dehydrogenase (SDH) (P < 0.05 or P < 0.01), increase CuZn-superoxide dismutase (CuZn-SOD) and glutathione-peroxidase (GSH-Px) levels, and decrease the levels of malondialdehyde (MDA) (P < 0.05); it could increase the mRNA and protein expression levels of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (mtTFA) (P < 0.05 or P < 0.01), and increase the synthesis of mitochondrial DNA (mtDNA) (P < 0.01). Conclusion: HXHT can reduce myocardial I/R injury in hyperlipidemic rats. The protective mechanisms may involve a reduction in blood lipids, enhancement of PGC-1α-PPARα pathway activity, and, subsequently, an increase in fatty acid ß-oxidation, which may provide the required input for mitochondrial energy metabolism. HXHT can additionally enhance PGC-1α-NRF1-mtTFA pathway activity and, subsequently, increase the antioxidant capacity, promote mtDNA synthesis, and reduce mitochondrial damage. The two pathways use PGC-1α as the intersection point to protect mitochondrial structure and function, reduce I/R-induced injury, and improve cardiac function.

17.
Plants (Basel) ; 9(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120937

RESUMO

Phosphorus (P) is an essential macroelement supporting maize productivity and low-P stress is a limiting factor of maize growth and yield. Improving maize plant tolerance to low P through molecular breeding is an effective alternative to increase crop productivity. In this study, a total of 111 diverse maize inbred lines were used to identify the favorable alleles and nucleotide diversity of candidate ZmNAC9, which plays an important role in response to low P and regulation in root architecture. A significant difference was found under low- and sufficient-P conditions for each of the 22 seedling traits, and a total of 41 polymorphic sites including 32 single nucleotide polymorphisms (SNPs) and 9 insertion and deletions (InDels) were detected in ZmNAC9 among 111 inbred lines. Among the 41 polymorphic studied sites, a total of 39 polymorphic sites were associated with 20 traits except for the dry weight of shoots and forks, of which six sites were highly significantly associated with a diverse number of low-P tolerant root trait index values by using a mixed linear model (MLM) at -log10 P = 3.61. In addition, 29 polymorphic sites under P-sufficient and 32 polymorphic sites under P-deficient conditions were significantly associated with a diverse number of seedling traits, of which five polymorphic sites (position S327, S513, S514, S520, and S827) were strongly significantly associated with multiple seedling traits under low-P and normal-P conditions. Among highly significant sites, most of the sites were associated with root traits under low-P, normal-P, and low-P trait index values. Linkage disequilibrium (LD) was strong at (r2 > 1.0) in 111 inbred lines. Furthermore, the effect of five significant sites was verified for haplotypes in 111 lines and the favorable allele S520 showed a positive effect on the dry weight of roots under the low-P condition. Furthermore, the expression pattern confirmed that ZmNAC9 was highly induced by low P in the roots of the P-tolerant 178 inbred line. Moreover, the subcellular localization of ZmNAC9 encoded by protein was located in the cytoplasm and nucleus. Haplotypes carrying more favorable alleles exhibited superior effects on phenotypic variation and could be helpful in developing molecular markers in maize molecular breeding programs. Taken together, the finding of this study might lead to further functions of ZmNAC9 and genes that might be involved in responses to low-P stress in maize.

18.
Photodiagnosis Photodyn Ther ; : 102051, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059110

RESUMO

BACKGROUND: Bacterial resistance is the main problem during the process of healing of infected wounds. As a new therapy, photodynamic therapy has broad-spectral antibacterial activity and non-selective action, which makes it possible to deal with antibiotic resistance. Compared with other treatments, it has advantages in wound healing such as less side effect, repeating treatment. Methylene blue is one of the commonly used medicine, but it is rarely used in clinical practice as a photosensitizer. The effect of methylene blue photodynamic therapy (MB-PDT) on infected wounds remains unclear. Our study aims to evaluate the safety and efficacy of MB-PDT on infected wounds. METHODS: In this study, 4 patients with infected wounds were collected, all of them were treated with MB-PDT by using the red LED which irradiated the wounds directly(635 nm, 120 J/cm2, 100 mW/cm2). The frequency and course of treatment were determined by the severity of the wound. RESULTS: After 4 times of treatments on average, infected wounds of all the patients were healed, and the clinical feature was significantly improved compared to before. The treatment also showed an excellent cosmetic effect. According to the follow-up periods of patients ranged from 3 to 12 months, there were no recurrences and side effects. CONCLUSIONS: MB-PDT has a great healing effect on infected wounds, and it is an effective, cheap and active clinical therapy.

19.
Cell Death Discov ; 6: 88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014432

RESUMO

Traumatic brain injury is a global leading cause of disability and death, which puts patients at high risk for developing dementia. Early intervention is believed as the key to minimize the development of brain damages that could aggravate the symptoms. Here, we report that the serine protease inhibitor SerpinA3N is upregulated in hippocampal neurons in the early stage of hippocampal stab injury (HSI), while its deficiency causes a greater degree of neuronal apoptosis and severer impairments of spatial learning and memory in mice after HSI. We further show that MMP2 is a key substrate of SerpinA3N, and MMP2 specific inhibitor (ARP100) can protect against neuronal apoptosis and cognitive dysfunction in mice after HSI. These findings demonstrate a critical role for SerpinA3N in neuroprotection, suggesting that SerpinA3N and MMP2 inhibitors might be a novel therapeutic agents for neurotrauma.

20.
Ann Intensive Care ; 10(1): 144, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074406

RESUMO

BACKGROUND: Patient-ventilator asynchrony is common in mechanically ventilated patients and may be related to adverse outcomes. Few studies have reported the occurrence of asynchrony in brain-injured patients. We aimed to investigate the prevalence, type and severity of patient-ventilator asynchrony in mechanically ventilated patients with brain injury. METHODS: This prospective observational study enrolled acute brain-injured patients undergoing mechanical ventilation. Esophageal pressure monitoring was established after enrollment. Flow, airway pressure, and esophageal pressure-time waveforms were recorded for a 15-min interval, four times daily for 3 days, for visually detecting asynchrony by offline analysis. At the end of each dataset recording, the respiratory drive was determined by the airway occlusion maneuver. The asynchrony index was calculated to represent the severity. The relationship between the prevalence and the severity of asynchrony with ventilatory modes and settings, respiratory drive, and analgesia and sedation were determined. Association of severe patient-ventilator asynchrony, which was defined as an asynchrony index ≥ 10%, with clinical outcomes was analyzed. RESULTS: In 100 enrolled patients, a total of 1076 15-min waveform datasets covering 330,292 breaths were collected, in which 70,156 (38%) asynchronous breaths were detected. Asynchrony occurred in 96% of patients with the median (interquartile range) asynchrony index of 12.4% (4.3%-26.4%). The most prevalent type was ineffective triggering. No significant difference was found in either prevalence or asynchrony index among different classifications of brain injury (p > 0.05). The prevalence of asynchrony was significantly lower during pressure control/assist ventilation than during other ventilatory modes (p < 0.05). Compared to the datasets without asynchrony, the airway occlusion pressure was significantly lower in datasets with ineffective triggering (p < 0.001). The asynchrony index was significantly higher during the combined use of opioids and sedatives (p < 0.001). Significantly longer duration of ventilation and hospital length of stay after the inclusion were found in patients with severe ineffective triggering (p < 0.05). CONCLUSIONS: Patient-ventilator asynchrony is common in brain-injured patients. The most prevalent type is ineffective triggering and its severity is likely related to a long duration of ventilation and hospital stay. Prevalence and severity of asynchrony are associated with ventilatory modes, respiratory drive and analgesia/sedation strategy, suggesting treatment adjustment in this particular population. Trial registration The study has been registered on 4 July 2017 in ClinicalTrials.gov (NCT03212482) ( https://clinicaltrials.gov/ct2/show/NCT03212482 ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...