Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 723: 138152, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32224408

RESUMO

Soil pollution with heavy metals has become a common problem in agricultural ecosystems and poses a threat to food safety and human health. Intercropping is now considered a promising alternative to address this issue. However, our understandings about the influences of intercropping systems on rhizosphere microbiota composition and their association with plant performance are still limited. In this study, rhizobox microcosm experiments were conducted to investigate the influence of cropping regimes (i.e. monoculture and intercropping) on the rhizosphere bacterial microbiota and their linkages with the phytoextraction of cadmium (Cd) by Zhongyouza 19 (Brassica napus L.), Xikou Huazi (Brassica juncea L.) and Sedum alfredii using 16S rRNA gene sequencing. Cadmium accumulation in shoots of B. napus and B. juncea grown under intercropping were enhanced by 370% and 27.8% respectively, as compared to monoculture. Soil compartmentation as a major determinant explained 57.6% of the rhizosphere bacterial microbiota variation, whereas plant species and cropping regime accounted for 26.4% of the variation. The overall abundance of the taxa was Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Verrucomicrobia, and Actinobacteria. Intercropping significantly enriched amplicon sequence variants (ASVs) abundance belonging to Actinobacteria, Bacilli, Deltaproteobacteria while depleting that of Acidobacteria in rhizosphere. Intercropping with S. alfredii influenced more on microbial composition of B. napus rhizosphere. The change in rhizosphere bacterial communities was related to metal availability, soil properties, and plant parameters. The enriched families of Pedosphaeraceae, Ruminococcaceae, Chitinophagaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Parachlamydiaceae were positively correlated with metal concentration in plants. These results indicate that S. alfredii and oilseed rape intercropping could be a promising approach for enhancing the remediation of Cd contaminated soil. Understanding the complex plant-microbe-metal interactions of intercropping system could facilitate the development of remediation strategy for phytoremediation of contaminated soils and sustainable agricultural production.

2.
J Hazard Mater ; 391: 122211, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32036315

RESUMO

This study aims to clarify the interaction mechanism of substrate with catechol 2,3-dioxygenase (C23O) through multi-technique combination. A novel C23O (named C23O-2G) was cloned, heterogeneously expressed, and identified as a new member in subfamily I.2 of extradiol dioxygenases. Based on the simulations of molecular docking and dynamics, the exact binding sites of catechol on C23O-2G were identified, and the catalytic mechanism mediated by key residues was proposed. The roles of the predicted residues during catalysis were confirmed by site-directed mutagenesis, and the mutation of Thr254 could significantly increase catalytic efficiency and substrate specificity of C23O-2G. The binding and thermodynamic parameters obtained from fluorescence spectra suggested that catechol could effectively quench the intrinsic fluorescence of C23O-2G via static and dynamic quenching mechanisms and spontaneously formed C23O-2G/catechol complex by the binding forces of hydrogen bond and van der Waals force. The results of UV-vis spectra, synchronous fluorescence, and CD spectra revealed obvious changes in the microenvironment and conformation of C23O-2G, especially for the secondary structure. The atomic force microscope images further demonstrated the changes from an appearance point of view. This study could improve our mechanistic understanding of representative dioxygenases involved in aromatic compound degradation.

3.
Sci Rep ; 10(1): 2736, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066858

RESUMO

Soil degradation due to global warming, water scarcity and diminishing natural resources negatively impacts food security. Soil fertility deterioration, particularly phosphorus (P) deficiency, remains a challenge in the arid and semi-arid regions. In this study, field experiments were conducted in different geographical locations to investigate the effects of organic amendments coupled with P fertilization and irrigation on soil physical-chemical properties, and the growth, yield and quality of wheat. Application of P fertilizers combined with organic amendments mitigated soil salinity, increased organic matter content, available water, hydraulic conductivity and available macronutrients, but decreased soil bulk density. Application of organic amendments slightly increased total Cd, Ni and Pb in soil, but Cd and Ni concentration was below allowable limits whilst Pb reached a hazardous level. Soil P fractions were significantly increased with the combined application of mineral P and organic amendments irrespective of salinity and irrigation. Crop growth yield and quality of wheat improved significantly in response to the integrated application of mineral P and organic amendments. In conclusion, the combination of mineral P sources with organic amendments could be successfully used as a cost-effective management practice to enhance soil fertility and crop production in the arid and semi-arid regions stressed with water scarcity and natural resource constraints.

4.
Environ Sci Pollut Res Int ; 27(8): 7943-7956, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31893361

RESUMO

Over the last decade, human population has been facing great challenges in ensuring appropriate supply of food free from cadmium (Cd) contamination. Selection of genetically low-Cd wheat (Triticum aestivum L.) genotypes, with a large biomass and high accumulation of Cd in straw but low-Cd concentration in grains, is an inventive approach of phytoremediation while keeping agricultural production in moderately contaminated soils. In this study, variations in Cd uptake and translocation among the 30 wheat genotypes in two different sites were investigated in field experiments. Significant differences in grain Cd concentration were observed between the two sites, with averaged values of 0.048 and 0.053 mg kg-1 DW, respectively. Based on straw Cd accumulation, grain Cd concentration, and TFrs, Bainong207 and Aikang58 for site A and Huaimai23 and Yannong21 for site B are promising candidates of low-Cd genotypes, which have considerable potential in achieving phytoremediation while keeping agricultural production on moderately or slightly Cd-polluted soil. The results indicate that it is possible to select the optimal low-Cd genotypes of wheat for different soil types by taking consideration of the effect of soil-wheat genotype interaction on grain Cd concentration.

5.
Sci Total Environ ; 712: 136497, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31945526

RESUMO

Direct discharge of untreated industrial waste water in water bodies and then irrigation from these sources has increased trace metals contamination in paddy fields of southern China. Among trace metals, cadmium (Cd) and lead (Pb) are classified as most harmful contaminants in farmland to many organisms including plants, animals and humans. Rice is a staple food which is consumed by half population of the world; due to longer growth period it can easily absorb and accumulate the trace metals from soil. The objective of study was to check the efficacy of Se and Si NPs (nanoparticles) alone or in combination on metals accumulation and Se-fortified rice (Oryzasativa L.) production as their efficiency remained untested. Alone as well as combined application of Se- and Si-NPs (5, 10 and 20 mg L-1) was achieved along with CK. All the treatments significantly reduced the Cd and Pb contents in brown rice, except CK, Se3, Si1 and Se1Si3. Combined application of Se and Si (Se3Si2) was more effective in reducing the Cd and Pb contents by 62 and 52%, respectively. In addition, foliar application of both NPs improved the rice growth and quality by increasing the grain yield, rice biomass, and Se contents in brown rice. Highest concentration of Se (1.35 mg kg-1) in brown rice was observed with combined application of Se- and Si-Nps (Se3Si2). Selenium speciation revealed the presence of organic species (74%) in brown rice. The combinations of different doses of Se- and Si-Nps are the main determining factor for total concentration of metals in grains. These results demonstrate that foliage supplementation of Se and Si-Nps alleviate the Cd and Pb toxicity by reducing the metals' concentration in brown rice. Additionally foliage supplementation improved the nutritional quality by reducing the phytic acid contents in rice grains.

6.
Chemosphere ; 246: 125798, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927376

RESUMO

Availability of cadmium (Cd) and nitrate and their transfer to green leafy vegetables is highly dependent on physical, chemical and biochemical conditions of the soil. The phenotypic characteristics, accumulation of hazardous materials and rhizosphere properties of two ecotypes of water spinach in response to water stress were investigated. Flooding significantly enhanced plant growth and decreased Cd and nitrate concentrations in the shoot and root of both ecotypes of water spinach. Flooding extensively changed the physicochemical properties and biological processes in the rhizosphere, including increased pH and activities of urease and acid phosphatase, and decreased availability of Cd and nitrate and activity of nitrate reductase. Furthermore, flooding increased rhizosphere bacteria community diversity (including richness and evenness) and changed their community structure. Denitrifying bacteria (Clostridiales, Azoarcus and Pseudomonas), toxic metal resistant microorganisms (Rhodosporillaceae, Rhizobiales and Geobacter) were enriched in the rhizosphere under flooding conditions, and the plant growth-promoting taxa (Sphingomonadaceae) were preferentially colonized in the high accumulator (HA) rhizosphere region. These results indicated that flooding treatments result in biochemical and microbiological changes in soil, especially in the rhizosphere and reduced the availability of Cd and nitrate to plants, thus decreasing their uptake by water spinach. It is, therefore, possible to promote crop growth and reduce the accumulation of hazardous materials in vegetable crops like water spinach by controlling soil moisture conditions.

7.
Waste Manag ; 102: 106-113, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670228

RESUMO

Hydrothermal carbonization (HTC) has drawn increasing interest for the disposal of solid wastes with a high moisture content, while minimal attention has been paid to HTC treatment of wetland plants and the corresponding phosphorus (P) transformation. In order to evaluate its feasibility for wetland plants treatment, hydrochars from different wetland plants were produced at different temperatures (200 °C, 220 °C, 240 °C, and 260 °C) and characterized, and the transformation of P was investigated. In comparison with wetland plant derived biochars, the derived hydrochars had a moderate pH (5.0-7.7), more oxygen-containing groups, and higher energy density (18.0-27.1 MJ kg-1). These properties were affected by hydrothermal temperature and feedstock choice. In contrast to high water-soluble P in biomass (71.0-73.2% of total P), more recalcitrant P species formed in hydrochars, implying that HTC treatment could achieve P immobilization and reduce P leaching loss. Nuclear magnetic resonance (NMR) results indicated that monoester-P and soluble orthophosphate were transformed to insoluble orthophosphate during the HTC treatment. Therefore, HTC is a promising treatment technique for wetland plants to produce valuable char with P reclamation.


Assuntos
Fósforo , Áreas Alagadas , Biomassa , Carbono , Temperatura Ambiente
8.
Environ Pollut ; 257: 113609, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761594

RESUMO

Present study reports the laboratory and field scale application of different organic and inorganic amendments to immobilize cadmium (Cd) and lead (Pb) in a co-contaminated alluvial paddy soil. For that purpose, lime, biochar, Fe-biochar and two composite amendments (CA) composed of biochar, lime, sepiolite and zeolite (CA1: composite amendment 1) and manure, lime and sepiolite (CA2: composite amendment 2) were firstly tested in an incubation experiment to ameliorate Cd and Pb co-contaminated alluvial soil. It was observed that liming and CA2 elevated the soil pH and reduced DTPA extractable Cd and Pb in the incubated soil leading to higher metal immobilization. Therefore, efficiency of lime and CA2 was further investigated in field conditions with mid rice as the test crop to evaluate field scale immobilization and precise application rate for the tested soil type. DTPA and CaCl2 extractable Cd (46 and 51%) and Pb (68 and 70%) in field soil were decreased with applied treatments. Speciation of Cd and Pb also promoted conversion of metal exchangeable contents to less-available forms. Activated functional groups on amendments' surface (_OH bonding, C_O and CO, -O-H, Si-O-Si, carboxylic and ester groups) sequestered metals by precipitation, adsorption, ion exchange or electro static attributes. Application of lime at 2400 kg/acre (T4) and CA2 at 1200 kg/acre was more effective in reducing rice shoot and grains metal contents. Moreover, obtained results in terms of pH, extractable content, speciation and yield, and microanalysis of amendments highlights the remarkable efficiency of lime and composite amendment to sorb Cd and Pb providing the key evidence of these amendments for metals immobilization and environmental remediation. Considering these results, lime and CA2 are potential amendments for co-contaminated rice field especially in context of alluvial soil.

9.
J Environ Manage ; 255: 109872, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785457

RESUMO

Use of water-soluble phosphorus (P) fertilizers such as superphosphates (SP) has been increasingly concerned due to the loss of P and trace metals such as cadmium (Cd) into the environment. Activated phosphate rock holds promising as an alternate due to non-destructive and slow release nature. The objective of this study was to assess the leaching potential of P and trace metals from newly developed activated dolomite phosphate rock (HA-DPR and SLS-DPR), as compared to water-soluble fertilizers, including superphosphate (SP), diammonium phosphate (DAP) and original dolomite phosphate rock (DPR). Two representative agricultural soils (Alfisol and Spodosol soil) were sampled at the 0-20 cm depth from two farms for the column leaching experiments. Seven leachings were conducted at day 1, 3, 7, 14, 21, 28, and 56, respectively, and a total of 1050 mL of deionized water (equivalent to half year's rainfall in the Indian River area) was applied for leaching. Leachates were collected from each leaching event and analyzed for water-soluble P and metals. Activated DPR application led to an increase in soil pH by 1.4-1.7 units, whereas SP resulted in a decrease in soil pH by 0.4-1.6 units. P leaching from activated DPR were 33-61 times less than that from SP or DAP. HA-DPR and SLS-DPR treatments reduced cumulative trace metals in leachate by 1.3-12.3 times for the Alfisol soil, and 1.4 to 8.4 times for the Spodosol soil, respectively. These results indicate that activated DPR fertilizers are more environmentally friendly than water-soluble fertilizers.


Assuntos
Fertilizantes , Poluentes do Solo , Carbonato de Cálcio , Difosfatos , Magnésio , Fosfatos , Fósforo , Solo
10.
Environ Sci Pollut Res Int ; 27(2): 2400-2411, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786758

RESUMO

Heavy metal pollution in soils has become an important concern for human health. Therefore, it is vital to develop suitable remediation strategies for contaminated soils. Oilseed rape tolerates high concentrations of heavy metals and is a promising candidate for the phytoextraction of cadmium (Cd) and lead (Pb) from metal-contaminated soils. A field experiment was conducted to evaluate 28 oilseed rape cultivars including Brassica napus L. and Brassica juncea L. for their ability to accumulate Cd and Pb. These cultivars were grown in a field co-contaminated with Cd (0.78 mg kg-1) and Pb (330 mg kg-1). The results showed that concentrations in shoots ranged from 1.22 to 3.01 mg kg-1 for Cd and from 10.8 to 29.5 mg kg-1 for Pb. Cadmium and Pb accumulations in shoots could reach 83.4 and 799 µg plant-1, respectively. The majority of translocation factors (TFs) for Cd (> 1.0) were higher than for Pb (≤ 1.0). However, concentrations of Cd and Pb in seeds were much lower, in the range of 0.04 to 0.21 mg kg-1 and 0.04 to 0.51 mg kg-1, respectively. The seed yields of oilseed rape varied from 1238 to 2904 kg ha-1, with a mean value of 2289 kg ha-1. Among the cultivars, three (OS-9, OS-12, and OS-15) were selected as Cd and Pb potential accumulators, with Cd accumulation in shoots being 2.74-3.70 times higher and Pb accumulation in shoots being 3.37-5.23 times higher as compared with the lowest accumulating cultivar. These selected cultivars (B. napus) have application potential for phytoextraction of Cd and Pb from polluted soils without stopping agricultural activities and accompanying food safety issues.

11.
J Environ Manage ; 257: 109999, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868649

RESUMO

The present study evaluated the efficiency of pre-selected composite amendments (CA-1: biochar-lime-sepiolite-zeolite and CA-2: manure-lime-sepiolite) for immobilization and sorption of Cd and Pb in field and batch sorption experiments. The field experiment was performed in a co-contaminated clay purple soil (stagnic anthrosols). Along with a control experiment (T1), CA-1 and CA-2 were tested at different rates including 750, 1500, 3000 and 6000 kg ha-1 by growing wheat as the test crop. The obtained results revealed that the highest dose of both composites (T5: 6000 kg ha-1 and T9: 6000 kg ha-1) increased the soil pH to 6.85 and 6.81, respectively as compared to the control (5.63). DTPA-extractable Cd and Pb contents decreased with composite treatments (T7 and T4) at harvest stage samples. Metal fractionation depicted that application of amendments decreased the exchangeable fraction at harvesting stage. Application of CA-2 and CA-1 (3000 kg ha-1) significantly increased the plant biomass (by 28% and 24%, respectively) and grain yield (by 26% and 22%, respectively) of wheat. Furthermore, batch sorption experiment results revealed that Langmuir adsorption model better fitted the sorption results with R2 values ranging between 0.99 and 0.91 for Cd and Pb, respectively. CA-1 and CA-2 exhibited the maximum adsorption capacity for Cd with no significant difference among treatments but Pb adsorption capacity was highest in CA-1 followed by CA-2 and control. The results of our experiments revealed that the application of organics combined with inorganic materials enhanced Cd and Pb immobilization and sorption, consequently reducing metals availability in laboratory and field conditions. Moreover, for field trials, application of the composite amendments at 3000 kg ha-1 emerged as the suitable treatment for tested wheat-grown area.


Assuntos
Esterco , Poluentes do Solo , Cádmio , Carvão Vegetal , Chumbo , Solo
12.
Environ Sci Pollut Res Int ; 27(5): 4997-5008, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845260

RESUMO

Coal fly ash (FA) is a solid waste produced in coal combustion. This study focused on the removal of Cd2+ from wastewater by a newly synthesized adsorbent material, the low-temperature and sodium hydroxide-modified fly ash (SHM-FA). The SEM and BET analyses of SHM-FA demonstrated that the adsorbent was porous and had a huge specific surface area. The XRF, XRD, FTIR and TGA characterization showed that SHM-FA has an amorphous structure and the Si-O and Al-O in the fly ash dissolved into the solution, which improved the adsorption capacity of Cd. The results indicated that SHM-FA has desired adsorption performance. The adsorption performance was significantly affected by the dosage, starting pH, Cd2+ initial concentrations, and temperature, as well as adsorption time. In the optimal conditions, the removal efficiency and adsorption capacity of Cd2+ by SHM-FA were 95.76% and 31.79 mg g-1, respectively. The experiment provided clearly explained adsorption kinetics and isotherms. And the results confirmed that the adsorption behavior was well described by the pseudo-second-order kinetic and Langmuir isotherm model, which means that the adsorption of Cd2+ was controlled by SHM-FA through surface reaction and external diffusion process. In addition, the recycling of SHM-FA for reuse after Cd2+ adsorption showed high removal efficiency up to six times of use. Therefore, it can be concluded that SHM-FA is a low-cost adsorbent for Cd2+ removal from wastewater.

13.
Ecotoxicol Environ Saf ; 187: 109857, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31683201

RESUMO

Forty oilseed sunflower cultivars were screened in two soil types for phytoremediation of Cd coupled with maximum biomass yield and oil production. Several cultivars exhibited a significant difference in biomass and yield with enhanced uptake in shoots and low accumulation in roots from two Cd-contaminated soil types, an Oxisol and an Iceptisol. The Transfer Factor of Cd was >1 in several cultivars in both soil types, where as a significant difference in phytoextraction of Cd was observed in the Oxisol (acidic soil), greater than in the Inceptisol (alkaline soil). The results revealed that of the 40 cultivars, S9178, Huanong 667in the Oxisol and cvs. DW 667, HN 667, Huanong 667 and 668F1 in the Inceptisol showed a high biomass, better yield and enhanced accumulation of Cd in the shoots but a lesser accumulation in oil. The screened cultivar S 9178 produced the greatest amount of oil (55.6%) with 77% oleic acid, which makes it suitable for human consumption. Cultivar Huanong 667 was found to be the highest accumulating cultivar in both soil types. It is therefore suggested that some sunflower cultivars do exhibit phytoremediation potential together with agro-production potential.


Assuntos
Cádmio/análise , Helianthus/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Helianthus/metabolismo , Humanos , Óleos Vegetais/química , Raízes de Plantas/química , Poluentes do Solo/metabolismo
14.
Sci Total Environ ; 707: 136121, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31865074

RESUMO

Immobilization is among the most-suitable strategies to remediate cadmium (Cd) contaminated sites. Organic additives (OAs) have emerged as highly efficient and environment-friendly immobilizers to eradicate Cd contamination in a wide range of environments. This review article is intended to critically illustrate the role of different OAs in Cd immobilization and to highlight the key findings in this context. Owing to the unique structural features (high surface area, cation exchange capacity (CEC), presence of many functional groups), OAs have shown strong capability to remediate Cd polluted soils by adsorption, electrostatic interaction, complexation and precipitation. Research data is compiled about the efficiency of different OAs (bio-waste, biochar, activated carbon, composts, manure, and plant residues) applied alone or in combination with other amendments in stabilization and renovation of contaminated sites. In addition to their role in remediation, OAs are widely advocated for being classical sources of essential plant nutrients and as agents to improve the soil health and quality which has also been focused in this review. OAs may contain considerable amounts of metals and therefore it becomes essential to assess their final contribution. Elimination of Cd contamination is essential to attenuate the contaminant effect and to produce the safe food. Therefore, deployment of environment-friendly remediation strategies (alone or in combination with other suitable technologies) should be adopted especially at early stages of contamination.

15.
Chemosphere ; 238: 124679, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524617

RESUMO

Biochar amendment for compost stabilization of divergent biowastes is gaining considerable attention due to environmental, agronomic and economic benefits. Research to date exhibits its favorable physico-chemical characteristics, viz. greater porosity, surface area, amount of functional groups, and cation exchange capacity (CEC), which allow interface with main nutrient cycles, favor microbial activities during composting, and improve the reproduction of earthworms during vermicomposting. Biochar amendment during composting and vermicomposting of biowastes boosts physico-chemical properties of compost mixture, microbial activities and organic matter degradation; and reduces nitrogen loss and emission of greenhouse gases (GHGs). It also improves the quality of final compost by increasing concentration of plant available nutrients, enhancing maturity, decreasing composting duration and reducing the toxicity of compost. Due to these characteristics, biochar could be considered a beneficial additive for the stabilization of different biowastes during composting and vermicomposting processes. Hence, good quality vermicompost, efficient recycling and management of biowastes could be achieved by addition of biochar through composting and vermicomposting.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas/análise , Substâncias Húmicas/microbiologia , Solo/química , Resíduos Sólidos/análise , Animais , Compostagem/métodos , Nitrogênio/análise , Oligoquetos
16.
Ecotoxicol Environ Saf ; 182: 109394, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31276885

RESUMO

Potentially toxic metal (PTM) contamination coupled with soil acidification has posed a severe threat to agricultural sustainability of tropical region in the world. In this study, a vermicopomst (VC) produced from vermicomposting cattle manure under tropical environment was applied to remediating a tropical acidic soil in Hainan, China. The effectiveness of VC in reducing available PTMs in soils was evaluated by incubation experiments with a Cd, Cr or Ni spiked soil and a Cd contaminated field soil. The dynamic changes of soil physical, chemical and biological properties after VC amendment were determined to understand the mechanisms of PTM immobilization. The results showed that VC amendment significantly reduced 0.01M CaCl2 extractable amounts of Cd, Ni and Cr in the spiked soils, and CaCl2 extractable Cd was reduced by 49.3% when VC was amended to the Cd contaminated field soil. Thermodynamic studies showed that VC had a high adsorption capacity for Cd, Ni and Cr, with the maximum adsorption (obtained from the Langmuir model) of 33.45, 26.17, and 20.88 mg/g, respectively. The reduction in CaCl2 extractable metals after VC amendment was consistent with the order of maximum adsorption of VC for Cd, Ni, and Cr. Vermicompost amendment increased soil pH by 0.7 to 1.5 units, which is positively related with VC rate, but negatively with the decrease in extractable metals. These results indicates that adsorption of metals onto VC and an increase in soil pH after VC amendment are likely responsible for the decreased availability of Cd, Ni, and Cr in the contaminated soil. In addition, the addition of stable organic substances and subsequent formation of water-stable aggregates may be also beneficial for immobilizing PTMs and improving tropical soil quality.


Assuntos
Compostagem/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Adsorção , Agricultura , Animais , Cádmio/análise , Bovinos , China , Poluição Ambiental , Esterco , Fenilpropionatos , Solo/química
17.
J Environ Qual ; 48(3): 694-700, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180439

RESUMO

As high-grade phosphate reserves begin to diminish worldwide, low-grade phosphate rock such as that containing dolomite [CaMg(CO)] needs to be explored as a potential fertilizer. Activation of dolomite phosphate rock with humic acid substantially increased P availability by chelating Ca and Mg. However, the release potential of heavy metals during the activation process should be evaluated. In this study, an orthogonal experiment was designed to investigate the effects of major activating factors on the release of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in activated fertilizers using a batch-equilibrium technique. The release potential of heavy metals from activated fertilizers was further compared with single superphosphate fertilizers made from the same dolomite phosphate rock. The activation process increased water-soluble Cr, Ni, and Zn by 39.8 to 65.7, 26.5 to 35.6, and 6.9 to 14.6 times, respectively, as compared with the original dolomite phosphate rocks, but there was a decrease in water-soluble Cd, Mn, Ni, Pb, and Zn by 1.4 to 5.4, 5.4 to 8.6, 2.3 to 3.7, 0.7 to 2.8, and 2.6 to 5.0 times, respectively, as compared with single superphosphate fertilizers. The release of heavy metals was affected by activating factors including dolomite phosphate rock type, particle size, humic acid dosage, and moisture content. Similar results were obtained with Mehlich-3 extraction, but levels of Mehlich-3-extractable heavy metals were less in activated fertilizers than in the original dolomite phosphate rocks, except Cu. These results indicate that activated fertilizers contain less bioavailable heavy metals than single superphosphate fertilizers and, therefore, are more environmentally friendly for application in agriculture.


Assuntos
Metais Pesados , Poluentes do Solo , Carbonato de Cálcio , Magnésio , Fosfatos
18.
Environ Pollut ; 252(Pt A): 733-741, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200201

RESUMO

Heavy metals contamination in agricultural soil has become a worldwide problem, and soil characteristics modulate metal availability in soils. Four field experiments were conducted simultaneously to evaluate concentration and distribution of cadmium (Cd) and lead (Pb) in 39 oilseed rape cultivars at four agricultural locations with different contamination levels of Cd and Pb, as well as the influence of soil characteristics together with soil total and bioavailable Cd and Pb concentration on metal transfer from soil to oilseed rape. Shoot concentrations of Cd and Pb in oilseed rape cultivars ranged from 0.09 to 3.18 and from 0.01 to 10.5 mg kg-1 across four sites. For most cultivars, Cd concentration in root or shoot were higher than pod and lowest in seed, while the highest Pb concentration was observed in root followed by shoot and seed. Stepwise multiple linear regression analysis allows for a better estimation of Cd and Pb concentration in oilseed rape while taking soil properties into consideration. The results demonstrated that Cd and Pb concentration in oilseed rape were correlated with soil organic matter (OM), cation exchange capacity (CEC), available phosphorus (AP), available potassium (AK), sand, soil total and available Cd and Pb concentration, and R2 varied from 0.993 to 0.999 (P < 0.05). The Cd and Pb levels found in oilseed rape indicated its phytoextraction potential for Cd and Pb co-contaminated agricultural soils in winter without stopping agricultural activities.


Assuntos
Brassica napus/metabolismo , Chumbo/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Cádmio/análise , Chumbo/análise , Modelos Lineares , Metais Pesados/análise , Brotos de Planta/metabolismo , Sementes/química , Solo , Poluentes do Solo/análise
19.
Sci Total Environ ; 684: 597-609, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31158623

RESUMO

Impact of different biochars supplemented (10% w/w) to promote vermicomposting of sewage sludge (SS) and kitchen waste (KW) mixture (SS + KW, 70:30) was studied on the growth, reproduction and survival of earthworms, and ultimately the quality of vermicompost. Four types of biochar used as secondary material for preincubation (16 days) and vermicomposting (30 days) were: pine tree biochar (PTB), poplar plant biochar (PPB), wetland plant biochar (WPB) and yard waste biochar (YWB). Preincubation and vermicomposting of biomass mixture were undertaken in 60 L and 2 L capacity round-shaped bioreactors, respectively. Samples of biomass undergoing degradation were drawn after every 2 days during preincubation and with 5 days interval during vermicomposting to analyze them for plant nutrients and heavy metals contents. Amendment of vermicompost substrate (SS + KW) with biochars; PTB, PPB, WPB and YWB increased the reproduction rate of earthworms (Eisenia fetida) by 44.6, 53.9, 29.3 and 38.8%, respectively as compared to control (no biochar, NB). There has been significant reduction in total content of Cd (0.2-5.1%), Cr (7.3-10.8%), Cu (3.1-7.4%), Mn (3.2-8.4%), Pb (9.0-45.9%) and Zn (1.1-5.7%) by the application of different biochars as compared to NB after vermicomposting. The SEM/EDS images also reflected reduced concentration of these heavy metals in the final vermicompost as compared to initial mixtures. Progressively, biochar amendments increased the concentration of all macronutrients, viz., TN (15.8-31.0%), TP (8.6-9.9%), TK (2.8-17.3%), Ca (4.1-9.9%) and Mg (0.8-12.2%); while, reduced the pH (1.9-2.3%), content of Na (6.6-22.3%), TOC (6.6-15.4%), OM (5.0-8.2%) and C:N ratio (2.6-18.9%). Earthworm body accumulation factor (BAF) of heavy metals was: Cd > Zn > Pb > Cu > Mn > Cr at the termination stage of experiment. In conclusion, amending the SS + KW mixture with 10% (w/w) PPB for vermicomposting rendered higher count of cocoons, growth rate and reproduction rate of earthworms, which ultimately produce nutrients-rich vermicompost lower in heavy metals.


Assuntos
Carvão Vegetal/análise , Compostagem/métodos , Metais Pesados/química , Oligoquetos/fisiologia , Esgotos/análise , Poluentes do Solo/química , Solo/química , Animais , Carvão Vegetal/classificação , Oligoquetos/crescimento & desenvolvimento
20.
J Environ Manage ; 243: 144-156, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100659

RESUMO

Sewage sludge and kitchen refuse are ubiquitously mounting wastes with high organic load, which if reprocessed they could salvage the environment. Reckoned with this certitude, an incubating study was initiated on sequential preincubation of sewage sludge with kitchen waste in 100:0, 70:30, 50:50, and 30:70 ratios for 16 days ensued by vermicomposting of 30 days using Eisenia fetida. Concentration of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) in the biosolid mixtures increased during preincubation but reduced progressively through vermicomposting due to bioaccumulation of these metals in the earthworm tissues. Earthworm growth parameters data reflected that sewage sludge and kitchen waste mixture with 70:30 ratio increased the number of cocoons (10.6%), biomass (8.2%), growth rate (8.3%), reproduction rate (12.2%), and decreased their mean mortality rate (80.1%) as compared to that in sole sewage sludge (control). Results of chemical analysis and SEM/EDS imaging, showed that alkalinity, organic carbon, C/N ratio, organic matter and concentration of trace elements (Cd, Cr, Cu, Mn, Pb, and Zn) reduced while macronutrients (N, P, K, Ca and Mg) increased in the final vermicompost as compared to that in initial mixtures. The FT-IR analysis also revealed that various biochemical functional groups underwent biodegradation during combined preincubation-vermicomposting. Bioaccumulation factor (BAF) of all trace elements in the earthworm tissues was higher with 70:30 ratio of substrates, with the trend of Cd > Zn > Cu > Mn > Pb > Cr. Hence, this study concludes that combined preincubation-vermicomposting is the most efficient and ecofriendly technique for biodegradation, stabilization, and conversion of sewage sludge and kitchen waste into organic fertilizer. The nutrient rich vermicompost can be safely used as horticultural substrate and soil conditioner for efficient management of degraded soils. Finally, combined preincubation-vermicomposting is a sustainable system of recycling the sewage sludge along with kitchen waste.


Assuntos
Metais Pesados , Oligoquetos , Animais , Esgotos , Solo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA